Investigation of *in vitro* Antileishmanial Activity of Moxifloxacin, Linezolid and Caspofungin on *Leishmania tropica* Promastigotes

Leishmania tropica Promastigotları Üzerinde Moksifloksasin, Linezolid ve Kaspofunginin *in vitro* Antileishmanial Etkisinin Araştırılması

Mehmet Emin Limoncu¹, Bayrı Eraç², Tuğba Gürpinar³, Ahmet Özbilgin⁴, İ. Cüneyt Balcıoğlu⁴, Mine Hoşgör-Limoncu²

¹Vocational School of Health Services, Celal Bayar University, Manisa, Turkey
²Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, İzmir, Turkey
³Department of Pharmacology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
⁴Department of Parasitology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey

ABSTRACT

Objective: This study aimed to evaluate the potential *in vitro* anti-leishmanial activities of moxifloxacin, linezolid and caspofungin against *Leishmania tropica*.

Methods: *In vitro* effects of all agents were studied by using the microdilution method. For this purpose, serial dilutions of the aforementioned agents were prepared in concentrations between 4096 μg/mL-0.008 μg/mL. Afterwards, promastigotes incubated in suitable medium were counted with the hemocytometer and adjusted as having a last concentration of 2.5x10⁶ cells/mL in wells containing medium+antibiotic or antifungal. After incubation live promastigotes were counted with the hemocytometer and inhibitor concentrations (IC₅₀) were determined by comparing with the control that contained no antibiotics or antifungal.

Results: IC₅₀ values of moxifloksacin, linezolid and caspofungin were found as 194.7 μg/mL, 896 μg/mL and 235.7 μg/mL, respectively.

Conclusion: As a result, moxifloxacin was found to be effective in lower concentrations than the other studied agents against *L. tropica* promastigotes. *(Turkiye Parazitol Derg 2013; 37: 1-3)*

Key Words: *Leishmania tropica*, antileishmanial activity, moxifloxacin, linezolid, caspofungin

Received: 05.06.2012 Accepted: 16.01.2013

ÖZET

Amaç: Bu çalışmada, *Leishmania tropica* üzerine moksifloksasin ve linezolid ile kaspofunginin, potansiyel anti-leishmanial etkilerinin *in vitro* olarak araştırılması amaçlandı.

Yöntemler: Tüm ajanların *in vitro* etkisi mikrodilüsyon yöntemiyle araştırıldı. Bu amaçla moksifloksasin, linezolid ve kaspofunginin 4096 μg/mL-0.008 μg/mL aralığında konsantrasyonlarda seri dilüsyonlar yapılmıştır. Ardından uygun besiyerinde inkübe edilen promastigotlar hemocitometre ile sayıldı ve besiyeri-antibiyotik veya antifungal içeren kuyucuklardaki son konsantrasyon 2.5x10⁶ hücre/mL olarak seçilecek ayarlandi. İnkübasyondan sonra canlı promastigotlar hemocitometre ile sayıldı ve ajanların %50 inhibitör konsantrasyonları (IK₅₀) kontrollerle karşılaştırılmıştır.

Bulgular: Moksifloksasin, linezolid ve kaspofunginin *in vitro* IK₅₀ değerleri sırasıyla 194.7 μg/mL, 896 μg/mL ve 235.7 μg/mL olarak bulundu.

Sonuç: Moksifloksasinin, *L. tropica* promastigotlarına karşı çalışılan diğer ajanlara göre daha düşük konsantrasyonlarda etkili olduğu sonucuna varıldı. *(Turkiye Parazitol Derg 2013; 37: 1-3)*

Anahtar Sözcükler: *Leishmania tropica*, antileishmanial aktivite, moxifloxacin, linezolid, caspofungin

Geliş Tarihi: 05.06.2012 Kabul Tarihi: 16.01.2013

This study was presented in Gülhane Microbiology Days, Antimicrobial Chemotherapy Laboratory Practices and New Approaches, 2010, İstanbul, as a poster.

Address for Correspondence / Yazışma Adresi: Dr. Bayrı Eraç, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, İzmir, Turkey Phone: +90 232 311 40 83 E-mail: bayri.erac@ege.edu.tr, eracb@yahoo.com
doi:10.5152/tpd.2013.01
INTRODUCTION

Leishmaniasis is an important tropical disease which influences 20 million people in 80 countries worldwide and 350 million people are at risk. Cutaneous leishmaniasis (CL) is being reported in many areas of our country, especially from Southeast Anatolia, Mediterranean and Aegean Regions of Turkey (1). Currently, the first choice of treatment for the disease is pentavalent antimony compounds. Recently, increase in the number of resistant cases for these compounds and inefficacy of the treatment in immunosuppressive individuals have been observed. It is determined that pump mediated multiple drug resistance has a part in resistance development (2). Alternative treatment options have been investigated, because current drugs have only limited effect on leishmaniasis and are toxic and expensive (3, 4).

Nowadays, effects of intracellularly active antibiotics and antifungal agents have been researched on Leishmania amastigotes and promastigotes (5, 6). Quinolones are synthetic antibacterial drugs and nalidixic acid is a prototype antibiotic of this class. It acts by inhibiting DNA topoisomerase type II (girase) or topoisomerase type IV, that are responsible for DNA replication, recombination and repair in bacteria. Moxifloxacin is a broad spectrum fluoroquinolone and is active against Gram-positive, Gram-negative and atypical pathogens. In addition, it can be taken once daily.

Linezolid is the first oxazolidinone derivation that is used clinically. It deteriorates the tRNA binding site by bonding the 50S ribosomal subunit and therefore formation of 70S initiation complex is prevented (7). Echinocandins are semisynthetic lipopeptide compounds which inhibit 1,3-β-glucan synthesis, an important component of the fungus cell wall. They show selective toxicity because mammalian cells do not include 1,3-β-glucan. The most known member of this group is caspofungin and others are also available (8).

In this study, we aimed to evaluate the potential in-vitro antileishmanial activities of moxifloxacin, linezolid and caspofungin against Leishmania tropica (MHOM/TR/10/CBU52).

METHODS

Parasite
In our study, L. tropica promastigotes (MHOM/TR/10/CBU52), isolated in Manisa were used.

Agents and Methods
In this study, in vitro effects of moxifloxacin (Bayer, Turkey), linezolid (Pfizer, Turkey) and caspofungin (Merck Sharp & Dohme, Turkey) were studied by using the microdilution method according to Clinical Laboratory Standards Institute (CLSI) recommendations (9). For this purpose, serial dilutions of mentioned agents were prepared in concentration between 4096 μg/mL-0.0008 μg/mL. Afterwars, promastigotes that had been incubated in RPMI-1640 medium (Sigma), including 5% fetal-calf serum (FCS), were counted with the hemocytometer and adjusted as having a final concentration of 2.5x10^6 cells/mL in wells containing 200 μL RPMI+5% FCS +antibiotic or antifungal. Microplates were incubated for 48 hours in 27°C. Live promastigotes were counted with the hemocytometer after 48 hours and inhibitor concentrations (IC_{50}) were determined by comparing with the control which does not contain antibiotics or antifungal. Amphotericin B (Sigma) (100 μg/mL- 0.0002 μg/mL), that is used for CL treatment, was used as control. The procedure was performed in triplicate and mean values of the results were calculated.

RESULTS

IC_{50} values of moxifloxacin, linezolid and caspofungin were found as 194.7 μg/mL, 896 μg/mL and 235.7 μg/mL, respectively. IC_{50} value of amphotericin B was detected as 0.026 μg/mL. IC_{50} values of studied agents and the number of live promastigotes are shown in Table 1.

DISCUSSION

Cutaneous leishmaniasis is common in many regions of the world, including our country. Today, the increasing number of patients with immune deficiency increases the incidence of opportunistic Leishmania infections. Use of pentavalent antimony compounds, that is the first choice of leishmaniasis treatment, was restricted due to several side effects and resistance development (10). Thus, new treatment options are being considered.

One of the groups among the alternative treatment choices is antifungal agents. Amphotericin B is the most commonly used one in this group and it was approved by Food and Drug Administration (FDA) for the treatment of visceral leishmaniasis. Efficacy of azoles such as ketoconazole, itraconazole and flucon...

<table>
<thead>
<tr>
<th>Agents</th>
<th>IC_{50} (µg/mL)</th>
<th>Concentrations (µg/mL)</th>
<th>Number of Promastigots (x10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moxifloxacin</td>
<td>194.7</td>
<td>4096</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2048</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Linezolid</td>
<td>896</td>
<td>4096</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2048</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>235.7</td>
<td>4096</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2048</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Growth control: 35x10^6 cell/mL
azole that inhibit ergosterol synthesis in fungus was tested on leishmania species (11). Caspofungin is a new antifungal agent and prevents fungus cell wall synthesis. A limited number of studies were made researching the efficacy of caspofungin against some species of protozoa. For example, it is found that caspofungin is effective in 250 mg/L concentration against Acanthamoeba species (12). In the present study, efficacy of caspofungin was investigated in concentrations between 4096-0.008 μg/mL on L. tropica, and the IC_{50} value was found as 235 μg/mL. Studies on in vivo efficacy of caspofungin in different Leishmania species will establish a better evaluation of possibility for using this agent in leishmaniasis treatment.

There are a limited number of studies evaluating the efficacy of linezolid on protozoa. In a study regarding to efficiency of linezolid on Plasmodium falciparum, protein synthesis inhibitor drugs such as doxycycline and azithromycin were used as controls and antimalarial effects of these antibiotics was attributed to being active against prokaryote organelles such as mitochondria and apicoplast. However, it was found that linezolid is not as efficient as others (13). In an immunodeficient patient with acute granulomatus Acanthamoeba encephalitis, combination therapy with linezolid, meropenem, moxifloxacin and fluconazole were found effective in survival (14). In the present study, the IC_{50} value of linezolid, studied in concentrations between 4096-0.008 μg/mL, was found as a very high value of 896 μg/mL. The low efficacy of linezolid against Leishmania was attributed to the different ribosome structure between parasites and bacteria.

Studies investigating the efficacy of fluoroquinolone antibiotics in treatment of clinical leishmaniasis, are available (5, 10). It was stated that DNA topoisomerase enzymes of trypanosomatide parasites (Leishmania spp. and Trypanosoma spp.) are potential targets in terms of selective inhibition. These enzymes have significant structural and biochemical differences compared to their homologues present in humans (5, 10). It was also found that topoisomerase II inhibitors are effective against Trypanosoma cruzi and L. donovani amastigotes (16). In our study, IC_{50} value of moxifloxacin was found 194.7 μg/mL and this is the lowest value among the studied agents. It was reported that some newly synthesized fluoroquinolone derivations are effective against Toxoplasma gondii and blood phases of P. falciparum (17). Also, it was detected that fluoroquinolones are efficient against Leishmania species in animal models and human macrophages cell lines (10, 15, 16). Van Der Vliet et al. (15) reported a suppressive Pseudomonas aeruginosa ototoxicnitis along with CL ulceration and it is determined that ciprofloxacin is effective for treatment of this infection. Hence, fluoroquinolones can be used both for Leishmania infections and for secondary bacterial infections that may occur.

CONCLUSION

Moxifloxacin was found to be effective in lower concentrations than the other studied agents against L. tropica promastigotes and it was considered that it can be used as an alternative treatment agent. Evaluation of the in-vivo effects of linezolid, caspofungin and especially moxifloxacin is required for providing more detailed information.

Conflict of Interest
No conflict of interest was declared by the authors.

REFERENCES