Keneler ve Kene Kaynaklı Hastalıkların Küresel Epidemiyolojisine Dair Kapsamlı Bir Derleme: Türkiye’den Bölgesel Bakış Açıları
PDF
Atıf
Paylaş
Talep
Derleme
CİLT: 49 SAYI: 1
P: 1 - 66
Aralık 2025

Keneler ve Kene Kaynaklı Hastalıkların Küresel Epidemiyolojisine Dair Kapsamlı Bir Derleme: Türkiye’den Bölgesel Bakış Açıları

Turkiye Parazitol Derg 2025;49(1):1-66
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 29.07.2025
Kabul Tarihi: 25.12.2025
Online Tarih: 07.01.2026
Yayın Tarihi: 07.01.2026
PDF
Atıf
Paylaş
Talep

ÖZ

Vektör kaynaklı hastalıklar, tarihsel olarak bitkiler, insanlar, evcil hayvanlar ve yaban hayatı için önemli tehditler oluşturmuş ve etkileri özellikle tropikal ve subtropikal bölgelerde belirginleşmiştir. Bunlar arasında kene kaynaklı hastalıklar (KKH’lar), giderek daha kritik bir küresel endişe kaynağı haline gelmiştir. Bu büyüyen tehdit, büyük ölçüde kenelerin genişleyen coğrafi yayılımı ve virüsler, bakteriler, protozoalar, nematodlar, mantarlar ve enfeksiyöz prion proteinleri dahil olmak üzere bulaştırdıkları çok çeşitli patojenlerden kaynaklanmaktadır. Keneler ve KKH’ların neden olduğu zorlukların küresel kümülatif ekonomik etkisi, özellikle kaynakları kısıtlı ve düşük gelirli bölgelerde yoksulluk ve gıda güvensizliğinin devam etmesine katkıda bulunmakta ve durumu daha da kötüleştirmektedir. Bu çok faktörlü yük, iklim değişikliği, habitat bozulması ve ekolojik bozulma, hızlı kentleşme, tarımsal ekosistem yönetimindeki değişiklikler, yaban hayatı rezervuarlarının yeniden canlanması ve artan antropozoonotik hareketlilik gibi karmaşık bir antropojenik faktör ağı tarafından daha da ağırlaştırılmaktadır. Ek olarak, uzun mesafeli ve kıtalararası hareket eden göçmen kuşlar, önemli ekolojik taşıyıcı konaklar olarak hizmet vererek, doğal olarak ixodid kene popülasyonlarının ve ilişkili patojen komplekslerinin yaygın dağılımını ve coğrafi yayılımını kolaylaştırmaktadırlar. Bu zorlukları daha da kötüleştiren bölgesel çatışmalar, zayıf çevresel ve sosyal yönetişim ve artan antimikrobiyal direnç, KKH’ların önlenmesi ve kontrol çabalarını zorlaştırmaktadır. Başta küresel ısınma olmak üzere çok sayıda antropojenik faktörün etkileri nedeniyle, ortaya çıkan ve yeniden ortaya çıkan KKH’ların risk potansiyeli, kenelerin zoocoğrafik dağılımı ve oluşturdukları küresel zorluklarla birlikte her geçen gün artmaktadır. Küresel epidemiyolojik bir bakış açısından, KKH’ların artan insidansı ve yaygınlığı hem medikal hem de veteriner hekimliği disiplinleri için önemli sonuçlar doğurmaktadır. Bu kritik durum, özellikle vektör kapasiteleri ve patojen bulaşma dinamikleri gibi temel hususlar açısından keneler hakkında gelişmiş ve kapsamlı bir anlayışı gerektirmektedir. İksodolojik kayıtlara göre, bugüne kadar dünya çapında fosil türler de dahil olmak üzere toplam 1,025 kene türü bildirilmiştir. Bu türlerden bazıları Türkiye’den de bildirilmiştir. Türkiye’nin yedi coğrafi bölgesinden bildirilen mevcut kene faunası toplam 58 türden oluşmaktadır: Argasidae familyasından 6 cinse ait 8 tür (Argas - 2 tür, Carios - 1 tür, Ornithodoros - 2 tür, Alectorobius - 1 tür, Alveonasus - 1 tür ve Otobius - 1 tür) ve Ixodidae familyasından 7 cinse ait 50 tür (Ixodes - 17 tür, Rhipicephalus - 8 tür, Dermacentor - 4 tür, Hyalomma - 9 tür, Haemaphysalis - 8 tür, Alloceraea - 1 tür ve Amblyomma - 3 tür). Özellikle Hyalomma ve Ixodes cinslerinin Türkiye’de insan enfestasyonlarıyla en sık ilişkilendirilen cinsler olarak bildirilmesi, epidemiyolojik önemlerini ve kene kaynaklı patojenlerin (KKP’ler) bulaşmasındaki potansiyel rollerini vurgulamaktadır. Dünya genelinde zoonotik özelliklere sahip birçok KKH bildirilmiştir. Bunlar arasında yaklaşık 100 viral hastalık (bunların yaklaşık yarısı zoonotiktir) ve çoğunluğu zoonotik potansiyel gösteren çok sayıda bakteriyel, protozoan, filarial nematod, fungal ve prionla ilişkili patojen bulunmaktadır. Son yıllarda moleküler epidemiyolojik çalışmalar, ortaya çıkan KKH’ların artan önemini vurgulamaktadır. Özellikle yaban hayatındaki KKP’lerin (geyiklerdeki bulaşıcı prion proteinleri ve dağ keçileri ile dağ koyunlarında tanımlanan riketsiyal patojenler gibi) yakından izlenmesi ve zoonotik potansiyellerinin açıklığa kavuşturulması kritik öneme sahiptir. Ayrıca, yarasalarla ilişkili kene türlerinin (özellikle mağaralarda yaşayan yarasaları enfeste eden Ixodes vespertilionis, Ixodes simplex, Ixodes ariadnae, Ixodes kaiseri ve Haemaphysalis erinacei gibi) ekolojik önemi ve ortaya çıkan ve yeniden ortaya çıkan KKP’ler için potansiyel vektörler olarak rolleri göz ardı edilmemelidir. Lyme borreliosis, anaplazmosis, ehrlichiosis, babesiosis ve theileriosis gibi küresel ekonomik kayıplara yol açan başlıca KKH’lar, Türkiye’de de önemli epidemiyolojik ve ekonomik zorluklara sebep olmaktadırlar. Özellikle Türkiye bağlamında, babesiosis, theileriosis, anaplazmosis ve ehrlichiosis gibi KKH’lar tüm coğrafi bölgelerden rapor edilmiş olup, büyük ekonomik kayıplara yol açmışlardır. İnsanlarda Kırım-Kongo hemorajik ateşi ağırlıklı olarak Orta Anadolu ve Karadeniz’in sahilden uzak iç kesimlerinde görülmüş olup, ülkenin diğer bölgelerinde de nadir olgular meydana gelmiştir. Lyme borreliosis en sık Marmara Bölgesi’nde bildirilmiş olup, bunu Orta Anadolu ve Akdeniz Bölgeleri takip etmiştir. KKH’ların küresel tehdidi, sürdürülebilir kalkınma hedeflerini doğrudan baltalamakta ve Dünya Sağlık Örgütü’nün “küçük ısırık, büyük tehdit” kampanyası ve sektörler arası iş birliği yoluyla zoonotik hastalık risklerini azaltmayı amaçlayan Tek Sağlık yaklaşımları ve eylemleri gibi uluslararası girişimleri teşvik etmektedir. Amaç, insan, hayvan ve çevre sağlığını kapsayan entegre stratejiler aracılığıyla ortaya çıkan ve yeniden ortaya çıkan KKH’larla mücadele etmektir. Kene kaynaklı mikroRNA’lar, CRISPR/Cas9 gen düzenleme, transfeksiyon sistemleri, hücre dışı vezikül araştırmaları ve DNA ve miRNA tabanlı aşılar gibi yenilikçi stratejiler, kene biyolojisini ve patojen bulaşmasını engellemede umut vadetmektedir. Entegre kene kontrol (EKK) programları, erken uyarı sistemleri, küresel izleme ve açık veri paylaşımı ile birleştirilen bu gelişmeler, etkili kene ve KKH yönetimi için hayati önem taşımaktadır. Bu karmaşık zorluğun üstesinden gelmek, uluslararası iş birliği, disiplinlerarası araştırma ve çevre yönetimini ve bilimsel okuryazarlığı destekleyen “ekosentrik eğitim” yaklaşımını gerektirir. Nihayetinde, kenelerin yayılmasını durdurmak ve KKH’ların küresel yükünü azaltmak; Tek Sağlık ilkelerini uygulamağa, güçlü yönetişim sergilemeğe ve araştırma, eğitim ve kapasite geliştirmeye ayrılan yatırıma bağlıdır. Bu derleme, keneler ve onların dağılımları, vektör yeterlilikleri, tıbbi ve veteriner önemleri, kene-patojen-konak etkileşimleri, ortaya çıkan KKH tehditleri, EKK stratejileri ve keneler ile KKH’ların kümülatif ekonomik etkileri hakkında genel bir bakış sunmaktadır.

Anahtar Kelimeler:
Epidemiyoloji, keneler, kene kaynaklı hastalıklar, kene kontrolü, ekonomik yük, Türkiye

Kaynaklar

1
Norval RAI, Perry BD, Young AS. The epidemiology of theileriosis in Africa. Nairobi: ILRAD. 1992.
2
Inci A, Ica A, Yildirim A, Vatansever Z, Cakmak A, Albasan H, et al. Economical impact of tropical theileriosis in the Cappadocia region of Turkey. Parasitol Res. 2007; 101 Suppl 2: S171-4.
3
Aksoy S. Transgenesis and the management of vector-borne disease. Adv Exp Med Biol. 2008.
4
Inci A, Yazar S, Tuncbilek AS, Canhilal R, Doganay M, Aydın L, et al. Vectors and vector-borne diseases in Turkey. Ankara Univ Vet Fak Derg. 2013; 60: 281-96.
5
Thorp JH. Arthropoda and related groups. In: Resh VH, Cardé RT, editors. Encyclopedia of Insects. 2nd ed. San Diego: Academic Press; 2009. p. 50-6.
6
Kogan M, Prokopy R. Agricultural entomology. In: Resh VH, Cardé RT, editors. Encyclopedia of Insects. 2nd ed. San Diego: Academic Press; 2009. p. 4-8.
7
Mullens BA. Veterinary entomology. In: Resh VH, Cardé RT, editors. Encyclopedia of Insects. 2nd ed. San Diego: Academic Press; 2009. p. 1031-4.
8
Edman JD. Medical entomology. In: Resh VH, Cardé RT, editors. Encyclopedia of Insects. 2nd ed. San Diego: Academic Press; 2009. p. 614-8.
9
Mans BJ. Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J Innate Immun. 2011; 3: 41-51.
10
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017; 7: 114.
11
Gubler DJ. Vector-borne diseases. Rev Sci Tech. 2009; 28: 583-8.
12
Goddard J, Zhou L. Physician’s guide to arthropods of medical importance, 5th Edition. Emerg Infect Dis. 2007; 13: 1442.
13
de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008; 13: 6938-46.
14
de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, et al. Perception of ticks and tick-borne diseases worldwide. Pathogens. 2023; 12: 1258.
15
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012; 28: 437-46.
16
Dantas-Torres F, Fernandes Martins T, Muñoz-Leal S, Onofrio VC, Barros-Battesti DM. Ticks (ixodida: argasidae, ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick Borne Dis. 2019; 10: 101252.
17
Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG. The hard ticks of the world: (acari: ixodida: ixodidae) [Internet]. Dordrecht: Springer Netherlands; 2014. Available from: https://doi.org/10.1007/978-94-007-7497-1
18
Guglielmone AA, Nava S, Robbins RG. Geographic distribution of the hard ticks (acari: ixodida: ixodidae) of the world by countries and territories. Zootaxa. 2023; 5251: 1-274.
19
Ledwaba MB, Malatji DP. Nuttalliella namaqua Bedford, 1931, a sole extant species of the genus Nuttalliella - a scoping review. Front Parasitol. 2024; 3: 1401351.
20
Peñalver E, Arillo A, Delclòs X, Peris D, Grimaldi DA, Anderson SR, et al. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat Commun. 2017; 8: 1924.
21
Chitimia-Dobler L, Mans BJ, Handschuh S, Dunlop JA. A remarkable assemblage of ticks from mid-Cretaceous Burmese amber. Parasitology. 2022; 149: 1-36.
22
Mans BJ, Kelava S, Pienaar R, Featherston J, de Castro MH, Quetglas J, et al. Nuclear (18S-28S rRNA) and mitochondrial genome markers of Carios (Carios) vespertilionis (Argasidae) support Carios Latreille, 1796 as a lineage embedded in the Ornithodorinae: re-classification of the Carios sensu Klompen and Oliver (1993) clade into its respective subgenera. Ticks Tick Borne Dis. 2021; 12: 101688.
23
Guglielmone AA, Sánchez ME, Franco LG, Nava S, Rueda LM, Robbins RG. Names of species of hard ticks. Rafaela (Argentina): Instituto Nacional de Tecnología Agropecuaria; 2023.
24
Muñoz-Leal S, Venzal JM, Jorge FR, Teixeira BM, Labruna MB. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick Borne Dis. 2021; 12: 101748.
25
Sun Y, Xu R, Liu Z, Wu M, Qin T. Ornithodoros (Ornithodoros) huajianensis sp. nov. (Acari, argasidae), a new tick species from the Mongolian marmot ( Marmota bobak sibirica ), Gansu province in China. Int J Parasitol Parasites Wildl. 2019; 9: 209-17.
26
Muñoz-Leal S, Martins MM, Nava S, Landulfo GA, Simons SM, Rodrigues VS, et al. Ornithodoros cerradoensis n. sp. (Acari: Argasidae), a member of the Ornithodoros talaje (Guérin-Méneville, 1849) group, parasite of rodents in the Brazilian Savannah. Ticks Tick Borne Dis. 2020; 11: 101497.
27
Muñoz-Leal S, Toledo LF, Venzal JM, Marcili A, Martins TF, Acosta ICL, et al. Description of a new soft tick species (Acari: Argasidae: Ornithodoros ) associated with stream-breeding frogs (Anura: Cycloramphidae: Cycloramphus ) in Brazil. Ticks Tick Borne Dis. 2017; 8: 682-92.
28
Mumcuoglu KY, Keskin A, Mans BJ, Dantas-Torres F. Ticks of the Middle East: taxonomy, biology, ecology, medical, and veterinary significance [Internet]. Dordrecht: Academic Press; 2025.
29
Chitimia-Dobler L, Handschuh S, Dunlop JA, Pienaar R, Mans BJ. Nuttalliellidae in Burmese amber: implications for tick evolution. Parasitology. 2024; 151: 891-907.
30
Aktas M, Altay K. Editorial: molecular epidemiology and phylogeny of tick-borne pathogens in ixodid ticks and vertebrate hosts. Front Vet Sci. 2024; 11: 1464982.
31
Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013; 29: 276-85.
32
Yukarı BA, Nalbantoğlu S, Karaer Z, İnci A, Eren H, Sayın F. Laboratuvarda Hyalomma marginatum ’un bazı biyolojik özellikleri [Some biological features of Hyalomma marginatum in the laboratory]. Turkiye Parazitol Derg. 2011; 35: 40-2. Turkish.
33
Bonnet S, Liu XY. Laboratory artificial infection of hard ticks: a tool for the analysis of tick-borne pathogen transmission. Acarologia. 2012; 52: 453-64.
34
Liu XY, Bonnet SI. Hard tick factors implicated in pathogen transmission. PLoS Negl Trop Dis. 2014; 8: e2566.
35
Geneva Environment Network. Antimicrobial resistance (AMR) as a global threat [Internet]. Geneva: Geneva Environment Network; 2025 [cited 2025 May 21]. Available from: https://www.genevaenvironmentnetwork.org/resources/updates/antimicrobial-resistance-and-the-environment/
36
Walker AR. Eradication and control of livestock ticks: biological, economic and social perspectives. Parasitology. 2011; 138: 945-59.
37
Willadsen P. Anti-tick vaccines. Parasitology. 2004; 129(Suppl): S367-87.
38
Nuttall PA, Trimnell AR, Kazimirova M, Labuda M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol. 2006; 28: 155-63.
39
Muhanguzi D, Ndekezi C, Nkamwesiga J, Kalayou S, Ochwo S, Vuyani M, et al. Anti-tick vaccines: current advances and future prospects. Methods Mol Biol. 2022; 2411: 253-67.
40
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci (Landmark Ed). 2009; 14: 2051-88.
41
Nene V, Lee D, Kang’a S, Skilton R, Shah T, de Villiers E, et al. Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochem Mol Biol. 2004; 34: 1117-28.
42
Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell. 2004; 119: 457-68.
43
Rudenko N, Golovchenko M, Edwards MJ, Grubhoffer L. Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol. 2005; 42: 36-41.
44
de la Fuente J, Blouin EF, Manzano-Roman R, Naranjo V, Almazán C, Pérez de la Lastra JM, et al. Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics. 2007; 90: 712-22.
45
Zhang X, Norris DE, Rasgon JL. Distribution and molecular characterization of Wolbachia endosymbionts and filarial nematodes in Maryland populations of the lone star tick ( Amblyomma americanum ). FEMS Microbiol Ecol. 2011; 77: 50-6.
46
McNally KL, Mitzel DN, Anderson JM, Ribeiro JM, Valenzuela JG, Myers TG, et al. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection. Ticks Tick Borne Dis. 2012; 3: 18-26.
47
Madder M, Horak I, Stoltsz H. Ticks: tick identification [Internet]. Pretoria: University of Pretoria, Faculty of Veterinary Science; Afrivet; OIE; 2011 [cited 2025 Jun 20]. Available from: https://www.afrivip.org/sites/default/files/identification_complete_1.pdf
48
Sonenshine DE, Roe RM. Overview: ticks, people, and animals. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 1. Oxford (UK): Oxford University Press; 2014. p. 3-16.
49
Apanaskevich D, Olivier JH Jr. Life cycles and history of ticks. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 1. Oxford (UK): Oxford University Press; 2014. p. 59-73.
50
Estrada-Peña A, Mans BJ. Tick-induced paralysis and toxicoses. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 313-32.
51
Pienaar R, Neitz AWH, Mans BJ. tick paralysis: solving an enigma. Vet Sci. 2018; 5: 53.
52
Crause JC, Verschoor JA, Coetzee J, Hoppe HC, Taljaard JN, Gothe R, et al. The localization of a paralysis toxin in granules and nuclei of prefed female Rhipicephalus evertsi evertsi tick salivary gland cells. Exp Appl Acarol. 1993; 17: 357-63.
53
Crause JC, van Wyngaardt S, Gothe R, Neitz AW. A shared epitope found in the major paralysis inducing tick species of Africa. Exp Appl Acarol. 1994; 18: 51-9.
54
Ahmed NA. Review of economically important cattle tick and its control in Ethiopia. J Vet Med Res. 2016; 3: 1044.
55
Drummond RO. Tick-borne livestock diseases and their vectors. Wld Anim Rev. 1983; 36: 28-33.
56
Mans BJ, Gothe R, Neitz AW. Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology. 2004; 129 Suppl: S95-111.
57
van Nunen S. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac Allergy. 2015; 5: 3-16.
58
Van Nunen SA, O’Connor KS, Clarke LR, Boyle RX, Fernando SL. An association between tick bite reactions and red meat allergy in humans. Med J Aust. 2009; 190: 510-1.
59
Chung WK, Sung H, Kim MN, Lee MW, Shin JH, Choi JH, et al. Treatment-resistant Scopulariopsis brevicaulis infection after filler injection. Acta Derm Venereol. 2009; 89: 636-8.
60
Commins SP, Platts-Mills TA. Tick bites and red meat allergy. Curr Opin Allergy Clin Immunol. 2013; 13: 354-9.
61
Nalçacı M. Mysterious allergy caused by tick bite: alpha-gal syndrome. Turkiye Parazitol Derg. 2024; 48: 195-207.
62
Kennedy AC; BCE1; Marshall E. Lone star ticks ( Amblyomma americanum ):: an emerging threat in delaware. Dela J Public Health. 2021; 7: 66-71.
63
Tu AT, Motoyashiki T, Azimov DA. Bioactive compounds in tick and mite venoms (saliva). Toxin Rev. 2005; 24: 143-74.
64
Fogel J, Chawla GS. Susceptibility, likelihood to be diagnosed, worry and fear for contracting Lyme disease. J Infect Public Health. 2017; 10: 64-75.
65
Johansson M, Mysterud A, Flykt A. Livestock owners’ worry and fear of tick-borne diseases. Parasit Vectors. 2020; 13: 331.
66
Maxwell SP, Brooks C, McNeely CL, Thomas KC. Neurological pain, psychological symptoms, and diagnostic struggles among patients with tick-borne diseases. Healthcare (Basel). 2022; 10: 1178.
67
Hevey D. Contextual, cognitive and emotional influences on risk perception for illness. Ir J Psychol. 2005; 26: 39-51.
68
Kianersi S, Luetke M, Wolfe CG, Clark WA, Omodior O. Associations between personal protective measures and self-reported tick-borne disease diagnosis in Indiana Residents. J Community Health. 2020; 45: 739-50.
69
Bissinger BW, Roe RM. Tick repellent research, methods, and development. In: Sonenshine DE, Roe RM, editors. Biology of ticks. Vol. 2. 2nd ed. Oxford (UK): Oxford University Press; 2014. p. 382-408.
70
Ginsberg HS. Tick control: trapping, biological control, host management, and other alternative strategies. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 409-44.
71
Baneth G, Samish M, Shkap V. Life cycle of Hepatozoon canis (Apicomplexa: Adeleorina: Hepatozoidae) in the tick Rhipicephalus sanguineus and domestic dog ( Canis familiaris ). J Parasitol. 2007; 93: 283-99.
72
Durden LA, Beati L. Modern tick systematics. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 1. Oxford (UK): Oxford University Press; 2014. p. 17-58.
73
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze GG. Human tick-borne diseases and advances in anti-tick vaccine approaches: a comprehensive review. Vaccines (Basel). 2024; 12: 141.
74
Fecchio A, Martins TF, Bell JA, De La Torre GM, Pinho JB, Weckstein JD, et al. Low host specificity and lack of parasite avoidance by immature ticks in Brazilian birds. Parasitol Res. 2020; 119: 2039-45.
75
Randolph SE. Ecology of non-nidicolous ticks. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 3-38.
76
Gray JS, Estrada-Peña A, Vial L. Ecology of nidicolous ticks. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 39-60.
77
Wikel SK. Tick-host interactions. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 1. Oxford (UK): Oxford University Press; 2014. p. 87-128.
78
Hoogstraal H. Argasid and nuttalliellid ticks as parasites and vectors. Adv Parasitol. 1985; 24: 135-238.
79
Chakraborty S, Steckler TL, Gronemeyer P, Mateus-Pinilla N, Smith RL. Farmers’ knowledge and practices about ticks and tickborne diseases in Illinois. J Agromedicine. 2023; 28: 756-68.
80
O’Neill X, White A, Gortázar C, Ruiz-Fons F. The impact of host abundance on the epidemiology of tick-borne infection. Bull Math Biol. 2023; 85: 30.
81
Fracasso G, Heylen D, Matthysen E. Male mating preference in an ixodid tick. Parasit Vectors. 2022; 15: 316.
82
Shepherd JG. Mating, sperm transfer and oviposition in soft ticks (acari: argasidae), a review. Pathogens. 2023; 12: 582.
83
Dantas-Torres F. Species concepts: what about ticks? Trends Parasitol. 2018; 34: 1017-26.
84
Sonenshine DE, Lane RS, Nicholson WL. Ticks (Ixodida). In: Mullen GR, Durden LA, editors. Medical and veterinary entomology. San Diego (CA): Academic Press; 2002. p. 517-58.
85
Food and Agriculture Organization of the United Nations (FAO). Ticks and tick-borne disease control: a practical field manual. Vol. 2. Rome: FAO; 1984.
86
Minjauw B, McLeod A. Tick-borne diseases and poverty. The impact of ticks and tick-borne diseases on the livelihood of small scale and marginal livestock owners in India and eastern and southern Africa. Research Report. DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburg, Edinburg. 2003.
87
Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and tick-borne diseases of livestock in the Middle East and North Africa: a review. Insects. 2021; 12: 83.
88
Hynes WL. How ticks control microbes: innate immunity responses. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 129-46.
89
de León AAP, Vannier E, Almazán C, Krause PJ. Tick-borne protozoa. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 147-79.
90
Nuttall PA. Tick-borne viruses. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 180-210.
91
Ogden NH, Artsob H, Margos G, Tsao JI. Non-rickettsial tick-borne bacteria and the diseases they cause. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 278-312.
92
Macaluso KR, Paddock CD. Tick-borne spotted fever group rickettsioses and Rickettsia species. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Vol. 2. Oxford (UK): Oxford University Press; 2014. p. 211-50.
93
Gaff HD, Kocan KM, Sonenshine DE. Tick-borne rickettsioses II (Anaplasmataceae). In: Sonenshine D, Roe RM, editors. Biology of Ticks 2nd ed. Oxford University Press: Oxford, UK; 2014.
94
Inci A, Yıldırım A, Duzlu O. Kenelerin Medikal ve Veteriner Önemleri. Vol. 1. Erciyes Üniv Yay. 2016.
95
Ogden NH, Dumas A, Gachon P, Rafferty E. Estimating the incidence and economic cost of lyme disease cases in canada in the 21st century with projected climate change. Environ Health Perspect. 2024; 132: 27005.
96
Yusuf JJ. Review on bovine babesiosis and its economical importance. J Vet Med Res. 2017; 4: 1090.
97
Tokarevich NK, Tronin AA, Blinova OV, Buzinov RV, Boltenkov VP, Yurasova ED, et al. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Glob Health Action. 2011; 4: 8448.
98
Wallace D, Ratti V, Kodali A, Winter JM, Ayres MP, Chipman JW, et al. Effect of rising temperature on lyme disease: Ixodes scapularis population dynamics and Borrelia burgdorferi transmission and prevalence. Can J Infect Dis Med Microbiol. 2019; 2019: 9817930.
99
Ogden NH, Ben Beard C, Ginsberg HS, Tsao JI. Possible Effects of climate change on ixodid ticks and the pathogens they transmit: predictions and observations. J Med Entomol. 2021; 58: 1536-45.
100
Cunze S, Glock G, Kochmann J, Klimpel S. Ticks on the move-climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res. 2022; 121: 2241-52.
101
Shih CM, Telford SR 3rd, Spielman A. Effect of ambient temperature on competence of deer ticks as hosts for Lyme disease spirochetes. J Clin Microbiol. 1995; 33: 958-61.
102
Estrada-Peña A, Ortega C, Sánchez N, Desimone L, Sudre B, Suk JE, et al. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic. Appl Environ Microbiol. 2011; 77: 3838-45.
103
Paul RE, Cote M, Le Naour E, Bonnet SI. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit Vectors. 2016; 9: 309.
104
Ma B, Ma XY, Chen HB, Zhang Y, Li LH. Effects of environmental factors on the distribution of suitable habitats of Ixodes ovatus in China. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2021; 33: 281-6.
105
Estrada-Peña A, de la Fuente J, Ostfeld RS, Cabezas-Cruz A. Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci Rep. 2015; 5: 10361.
106
Ruyts SC, Landuyt D, Ampoorter E, Heylen D, Ehrmann S, Coipan EC, et al. Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks Tick Borne Dis. 2018; 9: 1143-52.
107
Occhibove F, Kenobi K, Swain M, Risley C. An eco-epidemiological modeling approach to investigate dilution effect in two different tick-borne pathosystems. Ecol Appl. 2022; 32: e2550.
108
Parker JL, White KK. Lyme borreliosis in cattle and horses: a review of the literature. Cornell Vet. 1992; 82: 253-74.
109
Paddock CD, Lane RS, Staples JE, Labruna MB. Changing paradigms for tick-borne diseases in the Americas. In: Forum on Microbial Threats; Board on Global Health; Health and Medicine Division; National Academies of Sciences, Engineering, and Medicine. Global health impacts of vector-borne diseases: workshop summary [Internet]. Washington (DC): National Academies Press (US); 2016. p. A8. Available from: https://www.ncbi.nlm.nih.gov/books/NBK390439/
110
McCoy KD, Léger E, Dietrich M. Host specialization in ticks and transmission of tick-borne diseases: a review. Front Cell Infect Microbiol. 2013; 3: 57.
111
Babayani ND, Makati A. predictive analytics of cattle host and environmental and micro-climate factors for tick distribution and abundance at the livestock-wildlife interface in the lower okavango delta of botswana. Front Vet Sci. 2021; 8: 698395.
112
Ravindran R, Hembram PK, Kumar GS, Kumar KGA, Deepa CK, Varghese A. Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitol Res. 2023; 122: 691-704.
113
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017; 7: 281.
114
Uilenberg G. Babesia --a historical overview. Vet Parasitol. 2006; 138: 3-10.
115
Orkun Ö. Molecular investigation of the natural transovarial transmission of tick-borne pathogens in Turkey. Vet Parasitol. 2019; 273: 97-104.
116
Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, et al. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013; 3: 26.
117
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front Immunol. 2021; 12: 628054.
118
Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005; 436: 573-7.
119
Machácková M, Oborník M, Kopecký J. Effect of salivary gland extract from Ixodes ricinus ticks on the proliferation of Borrelia burgdorferi sensu stricto in vivo. Folia Parasitol. 2006; 53: 153-8.
120
Cabezas-Cruz A, Vayssier-Taussat M, Greub G. Tick-borne pathogen detection: what’s new? Microbes Infect. 2018; 20: 441-4.
121
Kleiboeker SB, Scoles GA, Burrage TG, Sur J. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J Virol. 1999; 73: 8587-9.
122
de la Fuente J, Garcia-Garcia JC, Blouin EF, McEwen BR, Clawson D, Kocan KM. Major surface protein 1a effects tick infection and transmission of Anaplasma marginale. Int J Parasitol. 2001; 31: 1705-14.
123
Kitsou C, Foor SD, Dutta S, Bista S, Pal U. Tick gut barriers impacting tick-microbe interactions and pathogen persistence. Mol Microbiol. 2021; 116: 1241-8.
124
Yang X, Koči J, Smith AA, Zhuang X, Sharma K, Dutta S, et al. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell Microbiol. 2021; 23: e13275.
125
Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014; 15: 58-71.
126
Narasimhan S, Rajeevan N, Graham M, Wu MJ, DePonte K, Marion S, et al. Tick transmission of Borrelia burgdorferi to the murine host is not influenced by environmentally acquired midgut microbiota. Microbiome. 2022; 10: 173.
127
Hodžić A, Duscher GG, Alić A, Beck R, Berry D. Peritrophic matrix: an important determinant of vector competence in hematophagous arthropods. Trends Parasitol. 2025; 41: 374-86.
128
Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF. Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J Med Entomol. 2002; 39: 809-13.
129
de la Fuente J. Controlling ticks and tick-borne diseases…looking forward. Ticks Tick Borne Dis. 2018; 9: 1354-7.
130
Estrada-Pena A, Mangold AJ, Nava S, Venzal JM, Labruna M, Guglielmone AA. A review of the systematics of the tick family Argasidae (Ixodida). Acarologia. 2010; 50: 317-33.
131
Mans BJ, Featherston J, Kvas M, Pillay KA, de Klerk DG, Pienaar R, et al. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick Borne Dis. 2019; 10: 219-40.
132
Manzano-Román R, Díaz-Martín V, de la Fuente J, Pérez-Sánchez R, Smith A, Brown B, et al. Soft ticks as pathogen vectors: distribution, surveillance and control. In: IntechOpen. Parasitology [Internet]. Rijeka: IntechOpen; 2012. Available from: https://www.intechopen.com/chapters/39669
133
Leonovich SA. On the origin of soft ticks (Parasitiformes, Ixodoidea; Argasidae). Entomological Review. 2024; 104: 310-20.
134
Venzal JM, Castillo GN, Gonzalez-Rivas CJ, Mangold AJ, Nava S. Description of Ornithodoros montensis n. sp. (Acari, Ixodida: Argasidae), a parasite of the toad Rhinella arenarum (Amphibia, Anura: Bufonidae) in the Monte Desert of Argentina. Exp Appl Acarol. 2019; 78: 133-47.
135
Muñoz-Leal S, Venzal JM, Nava S, Reyes M, Martins TF, Leite RC, et al. The geographic distribution of Argas (Persicargas) miniatus and Argas (Persicargas) persicus (Acari: Argasidae) in America, with morphological and molecular diagnoses from Brazil, Chile and Cuba. Ticks Tick Borne Dis. 2018; 9: 44-56.
136
Sándor AD, Mihalca AD, Domşa C, Péter Á, Hornok S. Argasid ticks of palearctic bats: distribution, host selection, and zoonotic importance. Front Vet Sci. 2021; 8: 684737.
137
Oliver JH Jr. Biology and systematics of ticks (Acari: Ixodida). Annu Rev Ecol Syst. 1989; 20: 397-430.
138
Vial L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite. 2009;16: 191-202.
139
Mans BJ, Neitz AW. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol. 2004; 34: 1-17.
140
Rajakaruna RS, Diyes CP. Spinose ear tick Otobius megnini infestations in race horses. In: Ticks and Tick-Borne Pathogens. 2019; IntechOpen.
141
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard ticks as vectors: the emerging threat of tick-borne diseases in India. Pathogens. 2024; 13: 556.
142
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George JC, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013; 6: 1.
143
Ica A, Inci A, Vatansever Z, Karaer Z. Status of tick infestation of cattle in the Kayseri region of Turkey. Parasitol Res. 2007; 101(Suppl 2) S167-9.
144
Noh BE, Kim GH, Lee HS, Kim H, Lee HI. The diel activity pattern of Haemaphysalis longicornis and its relationship with climatic factors. Insects. 2024; 15: 568.
145
Patel G, Shanker D, Jaiswal AK, Sudan V, Verma SK. Prevalence and seasonal variation in ixodid ticks on cattle of Mathura district, Uttar Pradesh. J Parasit Dis. 2013; 37: 173-6.
146
Orkun O. Comprehensive screening of tick-borne microorganisms indicates that a great variety of pathogens are circulating between hard ticks (Ixodoidea: Ixodidae) and domestic ruminants in natural foci of Anatolia. Ticks and Tick-borne Diseases. 2022; 13:102027.
147
Mohamed A, Fedlu M, Nigussie T, Wali MA. Prevalence, seasonal dynamics and associated variables of ixodid tick cattle infestation in Gondar, northwestern Ethiopia. Parasite Epidemiol Control. 2023; 21: e00294.
148
Clarke-Crespo E, Moreno-Arzate CN, López-González CA. Ecological niche models of four hard tick genera (Ixodidae) in Mexico. Animals (Basel). 2020; 10: 649.
149
Yeruham I, Hadani A, Galker F. The life cycle of Rhipicephalus bursa Canestrini and Fanzago, 1877 (Acarina: ixodidae) under laboratory conditions. Vet Parasitol. 2000; 89: 109-16.
150
Rollend L, Fish D, Childs JE. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis : a summary of the literature and recent observations. Ticks Tick Borne Dis. 2013; 4: 46-51.
151
Inci A, Yildirim A, Duzlu O, Doganay M, Aksoy S. Tick-borne diseases in Turkey: a review based on one health perspective. PLoS Negl Trop Dis. 2016; 10: e0005021.
152
İnci A, Doğanay M, Özdarendeli A, Düzlü Ö, Yıldırım A. Overview of zoonotic diseases in Turkey: the one health concept and future threats. Turkiye Parazitol Derg. 2018; 42: 39-80.
153
Özlem MB. Efficacy of long-acting oxytetracycline on bovine anaplasmosis. Ankara Univ Vet Fak Derg. 1988; 35.
154
Mubashir M, Tariq M, Khan MS, Safdar M, Özaslan M, Imran M, et al. Review on anaplasmosis in different ruminants. Zeugma Biological Science. 2022; 3: 32-45.
155
İnci A. Ankara’nın Çubuk ilçesinde sığırlarda babesiosis’in seroinsidensi üzerine araştırmalar. Ankara Univ Vet Fak Derg. 1992; 39.
156
Inci A. Kayseri yöresinde tektırnaklılarda Babesia equi (Laveran, 1901) ve Babesia caballi (Nuttall, 1910) yaygınlığının mikroskobik muayeneyla araştırılması. FÜ Sağ Bil Derg. 2002; 85-8.
157
Inci A, Çakmak A, Karaer Z, Dinçer S, Sayın F, Ica A. Kayseri yöresinde sığırlarda babesiosisin seroprevalansı. Turk J Vet Anim Sci. 2002; 26: 1345-50.
158
İça A, İnci A, Yıldırım A. Parasitological and molecular prevalence of bovine Theileria and Babesia species in the vicinity of Kayseri. Turk J Vet Anim Sci. 2007; 31: 33-8.
159
Ica A, Vatansever Z, Yildirim A, Duzlu O, Inci A. Detection of Theileria and Babesia species in ticks collected from cattle. Vet Parasitol. 2007; 148: 156-60.
160
İnci A, İça A, Yıldırım A, Düzlü Ö. Identification of Babesia and Theileria species in small ruminants in Central Anatolia (Turkey) via reverse line blotting. Turk J Vet Anim Sci. 2010; 34: 205-10.
161
Düzlü Ö, Yildirim A, İnci A. Türkiye’de evcil ruminantlarda Babesiosis. Turkiye Klinikleri J Vet Sci. 2012; 3: 27-34.
162
Düzlü Ö, Yildirim A, Inci A, Avcıoğlu H, Balkaya I. Düzlü Ö, et al. Sığırlarda Babesia bovis ve Babesia bigemina ’nın real-time PCR ile araştırılması ve izolatların moleküler karakterizasyonu. Ankara Univ Vet Fak Derg. 2015; 62: 27-35.
163
Ozubek S, Bastos RG, Alzan HF, Inci A, Aktas M, Suarez CE. Bovine Babesiosis in Turkey: impact, current gaps, and opportunities for intervention. Pathogens. 2020; 9: 1041.
164
İnci A, Yukarı BA, Sayın F. Study on babesiosis and theileriosis agents detected in some sheep and goat flocks using microscopic examination in Çankırı region. Ankara Üniv. Vet. Fak. Derg. 1998; 45: 105-13.
165
Inci A, Çakmak A, Ica A, Gunay O. Kayseri yöresinde tropical theileriosis’in istatiksel analizi. Turkiye Parazitol Derg. 2002; 26: 38-41.
166
Sayin F, Dinçer S, Karaer Z, Cakmak A, Inci A, Yukari BA, et al. Studies on the epidemiology of tropical theileriosis ( Theileria annulata infection) in cattle in Central Anatolia, Turkey. Trop Anim Health Prod. 2003; 35: 521-39.
167
İnci A, Nalbantoğlu S, Çam Y, Atasever A, Karaer K, Çakmak A, et al. Theileriosis and tick infestations in sheep and goats around Kayseri. Turk J Vet Anim Sci. 2003; 27: 57-60.
168
İnci A, İça A, Yıldırım A, Vatansever Z, Çakmak A, Albasan H, et al. Epidemiology of tropical theileriosis in the Cappadocia Region. Turk J Vet Anim Sci. 2008; 32: 57-64.
169
Düzlü Ö, İnci A, Yıldırım A, Önder Z, Çiloğlu A. The investigation of some tick-borne protozoon and rickettsial infections in dogs by Real Time PCR and the molecular characterizations of the detected isolates. Ankara Univ Vet Fak Derg. 2014; 61: 275-82.
170
İnci A, Düzlü O, Yıldırım A. Molecular prevalence of babesiosis and theileriosis in cattle in Turkey. In: 1st National Vectors and Vector-Borne Diseases Symposium (with international participation); 2-10 Sep 2012; Avanos, Nevşehir, Turkey. p. 95-6.
171
İnci A, Çakmak A, Cam Y, Karaer Z, Atasever A, Ica A. Kayseri yöresinde tropikal theileriosis’e bağlı ekonomik kayıplar. Turkiye Parazitol Derg. 2002; 26: 156-60.
172
Sonenshine DE. Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int J Environ Res Public Health. 2018; 15: 478.
173
Carter C, Yambem O, Carlson T, Hickling GJ, Collins K, Jacewicz M, et al. Male tick bite: a rare cause of adult tick paralysis. Neurol Neuroimmunol Neuroinflamm. 2016; 3: e243.
174
Molaei G, Little EAH, Williams SC, Stafford KC. Bracing for the worst - range expansion of the lone star tick in the Northeastern United States. N Engl J Med. 2019; 381: 2189-92.
175
Saleh MN, Allen KE, Lineberry MW, Little SE, Reichard MV. Ticks infesting dogs and cats in North America: biology, geographic distribution, and pathogen transmission. Vet Parasitol. 2021; 294: 10939.
176
Greay TL, Oskam CL, Gofton AW, Rees RL, Ryan UM, Irwin PJ. A survey of ticks (Acari: Ixodidae) of companion animals in Australia. Parasit Vectors. 2016; 9: 207.
177
Dehhaghi M, Kazemi Shariat Panahi H, Holmes EC, Hudson BJ, Schloeffel R, Guillemin GJ. Human tick-borne diseases in Australia. Front Cell Infect Microbiol. 2019; 9: 3.
178
Ledwaba MB, Nozipho K, Tembe D, Onyiche TE, Chaisi ME. Distribution and prevalence of ticks and tick-borne pathogens of wild animals in South Africa: a systematic review. Curr Res Parasitol Vector Borne Dis. 2022; 2: 100088.
179
Kaba T. Geographical distribution of ixodid ticks and tick-borne pathogens of domestic animals in Ethiopia: a systematic review. Parasit Vectors. 2022; 15: 108.
180
Makwarela TG, Nyangiwe N, Masebe T, Mbizeni S, Nesengani LT, Djikeng A, et al. Tick diversity and distribution of hard (ixodidae) cattle ticks in South Africa. Microbiology Research. 2023; 14: 42-59.
181
Pienaar R, Matloa D, Mans BJ. An official South African species checklist from the National Tick Collection of South Africa (Gertrud Theiler Tick Museum). Ticks Tick Borne Dis. 2025; 16: 102510.
182
Keve G, Sándor AD, Hornok S. Hard ticks (Acari: Ixodidae) associated with birds in Europe: review of literature data. Front Vet Sci. 2022; 9: 928756.
183
Wen TH, Chen Z. [The World List of Ticks. 1. Argasidae and Nuttallielidae (Acari: Ixodida)]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2016; 34: 58-69.
184
Zhang YK, Zhang XY, Liu JZ. Ticks (Acari: Ixodoidea) in China: Geographical distribution, host diversity, and specificity. Arch Insect Biochem Physiol. 2019; 102: e21544.
185
Fernandes, Stan. A Checklist of Indian Ticks (Acari : Ixodoidea). Indian Journal of Animal Sciences, 1997.
186
Sadanandane C, Gokhale MD, Elango A, Yadav P, Mourya DT, Jambulingam P. Prevalence and spatial distribution of Ixodid tick populations in the forest fringes of Western Ghats reported with human cases of Kyasanur forest disease and monkey deaths in South India. Exp Appl Acarol. 2018; 75: 135-42.
187
Hanafi-Bojd AA, Jafari S, Telmadarraiy Z, Abbasi-Ghahramanloo A, Moradi-Asl E. Spatial distribution of ticks (arachniada: argasidae and ixodidae) and their infection rate to crimean-congo hemorrhagic fever virus in Iran. J Arthropod Borne Dis. 2021; 15: 41-59.
188
İnci A, Yıldırım A, Düzlü Ö. The current status of ticks in Turkey: a 100-year period review from 1916 to 2016. Turkiye Parazitol Derg. 2016; 40: 152-7.
189
Gargılı A, Kar S, Yılmazer N, Cerit Ç, Sönmez G, Şahin F, et al. Evaluation of ticks biting humans in Thrace province, Turkey. Kafkas Univ Vet Fak Derg. 2010; 16: 141-6.
190
Karaer Z, Guven E, Nalbantoglu S, Kar S, Orkun O, Ekdal K, et al. Ticks on humans in Ankara, Turkey. Exp Appl Acarol. 2011; 54: 85-91.
191
Bursali A, Tekin S, Keskin A, Ekici M, Dundar E. Species diversity of ixodid ticks feeding on humans in Amasya, Turkey: seasonal abundance and presence of Crimean-Congo hemorrhagic fever virus. J Med Entomol. 2011; 48: 85-93.
192
Beyhan YE, Mungan M, Babür C. Yurtdışı seyahat ilişkili Amblyomma spp. olgusu [ Amblyomma spp. case related to overseas travel]. Turkiye Parazitol Derg. 2014; 38: 48-50.
193
Bakırcı S, Aysul N, Eren H, Ünlü AH, Karagenç T. Diversity of ticks biting humans in Aydın province of Turkey. Ankara Univ Vet Fak Derg. 2014; 61: 93-8.
194
Keskin A, Keskin A, Bursali A, Tekin S. Ticks (Acari: Ixodida) parasitizing humans in Corum and Yozgat provinces, Turkey. Exp Appl Acarol. 2015; 67: 607-1.
195
Kar S, Yılmazer N, Akyıldız G, Gargılı A. The human infesting ticks in the city of Istanbul and its vicinity with reference to a new species for Turkey. Systematic and Applied Acarology. 2017; 2245-55.
196
Keskin A, Selçuk AY, Kefelioğlu H. Ticks (Acari: Ixodidae) infesting some wild animals and humans in Turkey: notes on small collection. Acarol. Stud. 2019; 1: 11-5.
197
Kar S, Keles AG. Possible direct and human-mediated impact of climate change on tick populations in Turkey. CABI. 2021; 115-24.
198
Bursali A, Tekin S, Orhan M, Keskin A, Ozkan M. Ixodid ticks (Acari: Ixodidae) infesting humans in Tokat Province of Turkey: species diversity and seasonal activity. J Vector Ecol. 2010; 35: 180-6.
199
Aktas M, Dumanli N, Angin M. Cattle infestation by Hyalomma ticks and prevalence of Theileria in Hyalomma species in the east of Turkey. Vet Parasitol. 2004; 119: 1-8.
200
Aydin L, Bakirci S. Geographical distribution of ticks in Turkey. Parasitol Res. 2007; 101(Suppl 2): S163-6.
201
Bursali A, Keskin A, Tekin S. A review of the ticks (Acari: Ixodida) of Turkey: species diversity, hosts and geographical distribution. Exp Appl Acarol. 2012; 57: 91-104.
202
Keskin A, Koprulu TK, Bursali A, Ozsemir AC, Yavuz KE, Tekin S. First record of Ixodes arboricola (Ixodida: Ixodidae) from Turkey with presence of Candidatus Rickettsia vini (Rickettsiales: Rickettsiaceae). J Med Entomol. 2014; 51: 864-7.
203
Bursali A, Keskin A, Şimşek E, Keskin A, Tekin S. A survey of ticks (Acari: Ixodida) infesting some wild animals from Sivas, Turkey. Exp Appl Acarol. 2015; 66: 293-9.
204
Keskin A, Selçuk AY, Kefelioğlu H. Ticks (Acari: Ixodidae) infesting some small mammals from Northern Turkey with new tick-host associations and locality records. Exp Appl Acarol. 2017; 73: 521-6.
205
Orkun Ö, Karaer Z. First record of the tick Ixodes (Pholeoixodes) kaiseri in Turkey. Exp Appl Acarol. 2018; 74: 201-5.
206
Keskin A, Erciyas-Yavuz K. Ticks (Acari: Ixodidae) parasitizing passerine birds in Turkey with new records and new tick-host associations. J Med Entomol. 2019; 56: 156-61.
207
Girişgin AO, Çimenlikaya N, Bah SA, Aydın L, Girişgin O. First records of some ectoparasites from wild mammals in Turkey. Uludag Univ., J. Fac. Vet. Med. 2018; 37: 133-6.
208
Bursalı A, Tekin Ş, Keskin A. A contribution to the tick (Acari: Ixodidae) fauna of Turkey: the first record of Ixodes inopinatus Estrada-Peña, Nava & Petney. Acarol Stud. 2020; 2: 126-30.
209
Arslan Akveran G, Karasartova D, Comba A, Comba B, Keskin A, Taylan Özkan A. Ticks infesting stray dogs in Corum Province of Turkey. Turk Hij Den Biyol Derg. 2020; 77: 441-8.
210
Zerek A, Erdem İ, Yaman M, Altuğ ME, Orkun Ö. Ixodid ticks (ixodoidea: ixodidae) infesting wild animals in Hatay, Türkiye. Kafkas Univ Vet Fak Derg. 2023; 29: 641-7.
211
Sayin F, Karaer Z, Dincer S, Cakmak A, Inci A, Yukari BA, et al. A comparison of susceptibilities to infection of four species of Hyalomma ticks with Theileria annulata. Vet Parasitol. 2003; 113: 115-21.
212
Ciloglu A, Ibis O, Yildirim A, Aktas M, Duzlu O, Onder Z, et al. Complete mitochondrial genome characterization and phylogenetic analyses of the main vector of Crimean-Congo haemorrhagic fever virus: Hyalomma marginatum Koch, 1844. Ticks Tick Borne Dis. 2021; 12: 101736.
213
Yücesan B, Okur O, Yılmaz Y, Bayır T, Özkan Ö. Determination of the distribution of tick species in cattle in Çankırı (Province, Türkiye). Turk Hij Den Biyol Derg, 2024; 81: 189-200.
214
Orkun Ö, Vatansever Z. Rediscovery and first genetic description of some poorly known tick species: Haemaphysalis kopetdaghica Kerbabaev, 1962 and Dermacentor raskemensis Pomerantzev, 1946. Ticks Tick Borne Dis. 2021; 12: 101726.
215
Mumcuoglu KY, Estrada-Peña A, Tarragona EL, Sebastian PS, Guglielmone AA, Nava S. Reestablishment of Rhipicephalus secundus Feldman-Muhsam, 1952 (Acari: Ixodidae). Ticks Tick Borne Dis. 2022; 13: 101897.
216
Hekimoglu O, Elverici M, Yorulmaz T. A survey of hard ticks associated with cave dwelling mammals in Turkey. Ticks Tick Borne Dis. 2022; 13: 102008.
217
Uruc B, Talay S, Sakaci Z, Sirin D, Kar S. Monthly infestation characteristics of ticks in dogs in Turkish Thrace: possible urbanization trends in some sylvatic tick species. Syst Appl Acarol-UK. 2023; 1476-87.
218
Orkun Ö, Sarıkaya E, Yılmaz A, Yiğit M, Vatansever Z. Population genetic structure and demographic history of Dermacentor marginatus Sulzer, 1776 in Anatolia. Sci Rep. 2025; 15: 12570.
219
Keskin A, Doi K. Discovery of the potentially invasive Asian longhorned tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae) in Türkiye: an unexpected finding through citizen science. Exp Appl Acarol. 2025; 94: 47.
220
Ahrabi SZ, Pınarlık F, Akyıldız G, Kuşkucu M, Kar S, Ergönül Ö, et al. Human tick biting and tick-borne disease risk in Türkiye: Systematic review. PLoS Negl Trop Dis. 2025; 19: e0013092.
221
Keskin A, Selçuk AY. A survey for tick (Acari: Ixodidae) infestation on some wild mammals and the first record of Ixodes trianguliceps Birula in Turkey. Syst Appl Acarol-UK. 2021; 2209-20.
222
Keskin A, Selçuk AY, Kefelioğlu H. Ticks (Acari: Ixodidae) infesting some wild animals and humans in Turkey: notes on small collection. Acarol Stud. 2019; 1: 11-5.
223
Özkan M. Allophysalis alt cinsi ve Haemaphysalis (A.) aksarensis sp. n. Doğa Dergisi (TÜBİTAK). 1977; 1: 106-10.
224
Summers WC. Virus infection. Encyclopedia of Microbiology. 2009: 546-52.
225
Hadidi A, Kyriakopoulou PE, Barba M. Chapter 1 - Major advances in the history of plant virology. Applied Plant Virology. 2020; 3-24.
226
Aleksandr K, Olga B, David WB, Pavel P, Yana P, Svetlana K, et al. Non-vector-borne transmission of lumpy skin disease virus. Sci Rep. 2020; 10: 7436.
227
Moming A, Bai Y, Wang J, Zhang Y, Tang S, Fan Z, et al. The known and unknown of global tick-borne viruses. Viruses. 2024; 16: 1807.
228
Li C, Holmes EC, Shi W. The diversity, pathogenic spectrum, and ecological significance of arthropod viruses. Trends Microbiol. 2025; 33: 826-38.
229
Marchi S, Trombetta CM, Montomoli E. Emerging and re-emerging arboviral diseases as a global health problem. InTech. 2018.
230
Socha W, Kwasnik M, Larska M, Rola J, Rozek W. Vector-borne viral diseases as a current threat for human and animal health-one health perspective. J Clin Med. 2022; 11: 3026.
231
Rodhain F. Yellow fever: a brief history of a tropical virosis. Presse Med. 2022; 51: 104132.
232
Krasteva S, Jara M, Frias-De-Diego A, Machado G. Nairobi sheep disease virus: a historical and epidemiological perspective. Front Vet Sci. 2020; 7: 419.
233
Jeffries CL, Mansfield KL, Phipps LP, Wakeley PR, Mearns R, Schock A, et al. Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol. 2014; 95: 1005-14.
234
Yu KM, Park SJ. Tick-borne viruses: epidemiology, pathogenesis, and animal models. One Health. 2024; 19: 100903.
235
Touray M, Bakirci S, Ulug D, Gulsen SH, Cimen H, Yavasoglu SI, et al. Arthropod vectors of disease agents: their role in public and veterinary health in Turkiye and their control measures. Acta Trop. 2023; 243: 106893.
236
Begum F, Wisseman CL Jr, Casals J. Tick-borne viruses of West Pakistan. II. Hazara virus, a new agent isolated from Ixodes redikorzevi ticks from the Kaghan Valley, W. Pakistan. Am J Epidemiol. 1970; 92: 192-4.
237
Nuttall PA, Carey D, Moss SR, Green BM, Spence, RP. Hughes group viruses (bunyaviridae) from the seabird tick Ixodes (Ceratixodes) Uriae (acari: ixodidae). J Med Entomol. 1986; 23: 437-40.
238
Labuda M, Nuttall PA. Tick-borne viruses. Parasitology. 2004; 129(Suppl): S221-45.
239
Donoso-Mantke O, Karan LS, Růžek D. Tick-borne encephalitis virus: a general overview. InTech. 2011.
240
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, et al. Tick-borne viruses and biological processes at the tick-host-virus interface. Front Cell Infect Microbiol. 2017; 7: 339.
241
Shi J, Hu Z, Deng F, Shen S. Tick-borne viruses. Virol Sin. 2018; 33: 21-43.
242
Ergünay K, Saygan MB, Aydoğan S, Litzba N, Sener B, Lederer S, et al. Confirmed exposure to tick-borne encephalitis virus and probable human cases of tick-borne encephalitis in Central/Northern Anatolia, Turkey. Zoonoses Public Health. 2011; 58: 220-7.
243
Chen XP, Cong ML, Li MH, Kang YJ, Feng YM, Plyusnin A, et al. Infection and pathogenesis of Huaiyangshan virus (a novel tick-borne bunyavirus) in laboratory rodents. J Gen Virol. 2012; 93: 1288-93.
244
L’vov DK, Al’khovskiĭ SV, Shchelkanov MIu, Shchetinin AM, Deriabin PG, Gitel’man AK, et al. [Molecular genetic characterization of the Gissar virus (GSRV) (Bunyaviridae, Phlebovirus, Uukuniemi group) isolated from the ticks Argas reflexus Fabricius, 1794 (Argasidae) collected in dovecote in Tajikistan]. Vopr Virusol. 2014; 59: 20-4.
245
Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging tick-borne viruses in the twenty-first century. Front Cell Infect Microbiol. 2017; 7: 298.
246
Akagi K, Miyazaki T, Oshima K, Umemura A, Shimada S, Morita K, et al. Detection of viral RNA in diverse body fluids in an SFTS patient with encephalopathy, gastrointestinal bleeding and pneumonia: a case report and literature review. BMC Infect Dis. 2020; 20: 281.
247
Ergünay K, Polat C, Özkul A. Vector-borne viruses in Turkey: a systematic review and bibliography. Antiviral Res. 2020; 183: 104934.
248
Calisher CH, Gould EA. Taxonomy of the virus family Flaviviridae. Adv Virus Res. 2003; 59: 1-19.
249
Maes P, Adkins S, Alkhovsky SV, Avšič-Županc T, Ballinger MJ, Bente DA, et al. Taxonomy of the order Bunyavirales: second update 2018. Arch Virol. 2019; 164: 927-41.
250
Kuhn JH, Abe J, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, et al. Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota). J Gen Virol. 2023; 104: 001864.
251
ZOVER database [Internet]. Beijing: Institute of Zoology, Chinese Academy of Sciences; 2025 [cited 2025 May 23]. Available from: http://www.mgc.ac.cn/ZOVER.
252
Zhou S, Liu B, Han Y, Wang Y, Chen L, Wu Z, et al. ZOVER: the database of zoonotic and vector-borne viruses. Nucleic Acids Res. 2022; 50: D943-9.
253
CDC. Other spotted fever rickettsioses. About other spotted fever rickettsioses [Internet]. 2025 [cited 2025 Jun 24]. Available from: https://www.cdc.gov/other-spotted-fever/about/index.html
254
Shah T, Li Q, Wang B, Baloch Z, Xia X. Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Front Microbiol. 2023; 14: 1185829.
255
Hekimoğlu O, Sağlam İK. High Crimean-Congo hemorrhagic fever incidence linked to greater genetic diversity and differentiation in Hyalomma marginatum populations in Türkiye. Parasit Vectors. 2024; 17: 477.
256
Chihota CM, Rennie LF, Kitching RP, Mellor PS. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiol Infect. 2001; 126: 317-21.
257
Sohier C, Haegeman A, Mostin L, De Leeuw I, Campe WV, De Vleeschauwer A, et al. Experimental evidence of mechanical lumpy skin disease virus transmission by Stomoxys calcitrans biting flies and Haematopota spp. horseflies. Sci Rep. 2019; 9: 20076.
258
Issimov A, Taylor DB, Shalmenov M, Nurgaliyev B, Zhubantayev I, Abekeshev N, et al. Retention of lumpy skin disease virus in Stomoxys spp ( Stomoxys calcitrans, Stomoxys sitiens, Stomoxys indica ) following intrathoracic inoculation, Diptera: Muscidae. PLoS One. 2021; 16: e0238210.
259
Haegeman A, Sohier C, Mostin L, De Leeuw I, Van Campe W, Philips W, et al. Evidence of lumpy skin disease virus transmission from subclinically infected cattle by Stomoxys calcitrans. Viruses. 2023; 15: 1285.
260
Tuppurainen ES, Stoltsz WH, Troskie M, Wallace DB, Oura CA, Mellor PS, et al. A potential role for ixodid (hard) tick vectors in the transmission of lumpy skin disease virus in cattle. Transbound Emerg Dis. 2011; 58: 93-104.
261
Tuppurainen ES, Lubinga JC, Stoltsz WH, Troskie M, Carpenter ST, Coetzer JA, et al. Mechanical transmission of lumpy skin disease virus by Rhipicephalus appendiculatus male ticks. Epidemiol Infect. 2013; 141: 425-30.
262
Tuppurainen ES, Lubinga JC, Stoltsz WH, Troskie M, Carpenter ST, Coetzer JA, et al. Evidence of vertical transmission of lumpy skin disease virus in Rhipicephalus decoloratus ticks. Ticks Tick Borne Dis. 2013; 4: 329-33.
263
Lubinga JC, Tuppurainen ES, Coetzer JA, Stoltsz WH, Venter EH. Evidence of lumpy skin disease virus over-wintering by transstadial persistence in Amblyomma hebraeum and transovarial persistence in Rhipicephalus decoloratus ticks. Exp Appl Acarol. 2014; 62: 77-90.
264
Davies CR, Jones LD, Nuttall PA. Viral interference in the tick, Rhipicephalus appendiculatus. I. Interference to oral superinfection by Thogoto virus. J Gen Virol. 1989; 70: 2461-8.
265
Jones LD, Davies CR, Booth TF, Nuttall PA. Viral interference in the tick, Rhipicephalus appendiculatus. II. Absence of interference with Thogoto virus when the tick gut is by-passed by parenteral inoculation. J Gen Virol. 1989; 70: 2469-73.
266
Maqbool M, Sajid MS, Saqib M, Anjum FR, Tayyab MH, Rizwan HM, et al. Potential mechanisms of transmission of tick-borne viruses at the virus-tick interface. Front Microbiol. 2022; 13: 846884.
267
Talactac MR, Hernandez EP, Hatta T, Yoshii K, Kusakisako K, Tsuji N, et al. The antiviral immunity of ticks against transmitted viral pathogens. Dev Comp Immunol. 2021; 119: 104012.
268
de la Fuente J, Kocan KM. The impact of RNA interference in tick research. Pathogens. 2022; 11: 827.
269
Sharma A, Pham MN, Reyes JB, Chana R, Yim WC, Heu CC, et al. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis , by embryo injection and ReMOT Control. iScience. 2022; 25: 103781.
270
Sudhakar NR, Manjunathachar HV, Karthik K, Sahu S, Gopi M, Shanthaveer SB, et al. RNA interference in parasites; prospects and pitfalls. Adv Anim Vet Sci. 2013; 1: 1-6.
271
de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016; 38: 754-69.
272
Lindqvist R, Upadhyay A, Överby AK. Tick-borne flaviviruses and the type I interferon response. Viruses. 2018; 10: 340.
273
Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG, et al. Variability in the 2’-5’-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J Infect Dis. 2010; 202: 1813-8.
274
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Front Immunol. 2022; 13: 82943.
275
Harioudh MK, Perez J, So L, Maheshwari M, Ebert TS, Hornung V, et al. The canonical antiviral protein oligoadenylate synthetase 1 elicits antibacterial functions by enhancing IRF1 translation. Immunity. 2024; 57: 1812-27.e7.
276
Gracias S, Chazal M, Decombe A, Unterfinger Y, Sogues A, Pruvost L, et al. Tick-borne flavivirus NS5 antagonizes interferon signaling by inhibiting the catalytic activity of TYK2. EMBO Rep. 2023; 24: e57424.
277
Tripathi A, Chauhan S, Khasa R. A comprehensive review of the development and therapeutic use of antivirals in flavivirus infection. Viruses. 2025; 17: 74.
278
Orlinger KK, Hoenninger VM, Kofler RM, Mandl CW. Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus genome reveals an essential function of the second transmembrane region of protein e in flavivirus assembly. J Virol. 2006; 80: 12197-208.
279
Rumyantsev AA, Murphy BR, Pletnev AG. A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. J Virol. 2006; 80: 1427-39.
280
Růzek D, Gritsun TS, Forrester NL, Gould EA, Kopecký J, Golovchenko M, et al. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology. 2008; 374: 249-55.
281
Mlera L, Melik W, Bloom ME. The role of viral persistence in flavivirus biology. Pathog Dis. 2014; 71: 137-63.
282
Khan ZA, Yadav MK, Lim DW, Kim H, Wang JH, Ansari A. Viral-host molecular interactions and metabolic modulation: Strategies to inhibit flaviviruses pathogenesis. World J Virol. 2024; 13: 99110.
283
Türkiye İstatistik Kurumu (TUİK). [Internet]. 2025 [cited 2025 May 24]. Available from: https://data.tuik.gov.tr/Search/Search?text=t
284
Düzlü Ö, İnci A, Yıldırım A, Doğanay M, Özbel Y, Aksoy S. Vector-borne Zoonotic Diseases in Turkey: Rising Threats on Public Health. Turkiye Parazitol Derg. 2020; 44: 168-75.
285
Ergunay K, Whitehouse CA, Ozkul A. Current status of human arboviral diseases in Turkey. Vector Borne Zoonotic Dis. 2011; 11: 731-41.
286
Hardly WJ, Martin WB, Hakioğlu F, Chifney STE. A viral encephalitis of sheep in Turkey. Pendik Institute J. 1969; 1: 89-100.
287
İnci A, Yıldırım A, Duzlu O. Three emerging vector-borne diseases in Turkey. Erciyes Üniv Vet Fak Derg. 2014; 11: 117-20.
288
Ternovoi VA, Protopopova EV, Chausov EV, Novikov DV, Leonova GN, Netesov SV, et al. Novel variant of tickborne encephalitis virus, Russia. Emerg Infect Dis. 2007; 13: 1574-8.
289
Jori F, Bastos A, Boinas F, Van Heerden J, Heath L, Jourdan-Pineau H, et al. An updated review of Ornithodoros ticks as reservoirs of African swine fever in sub-Saharan Africa and Madagascar. Pathogens. 2023; 12: 469.
290
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol. 2023; 14: 1266759.
291
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis. 2024; 15: 102402.
292
Merck Veterinary Manual. Nairobi Sheep Disease - Concise summary of etiology, vectors, clinical presentation, and control measures [Internet]. 2024 update. 2024. Available from: https://www.merckvetmanual.com/
293
Mittova V, Tsetskhladze ZR, Motsonelidze C, Palumbo R, Vicidomini C, Roviello GN. Tick-borne encephalitis virus (TBEV): epidemiology, diagnosis, therapeutic approaches and some molecular aspects—an updated review. Microbiology Research. 2024; 15: 2619-49.
294
Celina SS, Italiya J, Tekkara AO, Černý J. Crimean-Congo haemorrhagic fever virus in ticks, domestic, and wild animals. Front Vet Sci. 2025; 11: 1513123.
295
Harris EK, Foy BD, Ebel GD. Colorado tick fever virus: a review of historical literature and research emphasis for a modern era. J Med Entomol. 2023; 60: 1214-20.
296
Růžek D, Yakimenko VV, Karan LS, Tkachev SE. Omsk haemorrhagic fever. Lancet. 2010; 376: 2104-13.
297
Bratuleanu BE, Temmam S, Munier S, Chrétien D, Bigot T, van der Werf S, et al. Detection of Phenuiviridae, chuviridae members, and a novel quaranjavirus in hard ticks from danube delta. Front Vet Sci. 2022; 9: 863814.
298
Ganguly S, Praveen PK, Wakchaure R, Para PA, Sharma S, Qadri K, et al. Bhanja virus: a review on virology and public health issues. Intern Jour Contemp Microbiol. 2016; 2: 12.
299
Xu Y, Wang J. The vector competence of Asian longhorned ticks in langat virus transmission. Viruses. 2024; 16: 304.
300
Burthe SJ, Kumbar B, Schäfer SM, Purse BV, Vanak AT, Balakrishnan N, et al. First evidence of transovarial transmission of Kyasanur Forest disease virus in Haemaphysalis and Rhipicephalus ticks in the wild. Parasit Vectors. 2025; 18: 14.
301
Lange RE, Prusinski MA, Dupuis AP 2nd, Ciota AT. Direct evidence of powassan virus vertical transmission in Ixodes scapularis in nature. Viruses. 2024; 16: 456.
302
Bratuleanu BE, Răileanu C, Bennouna A, Chretien D, Bigot T, Guardado-Calvo P, et al. Diversity of viruses in Ixodes ricinus in europe including novel and potential arboviruses. Transbound Emerg Dis. 2023; 2023: 6661723.
303
Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol. 2013; 43: 1059-77.
304
Lledó L, Giménez-Pardo C, Gegúndez MI. Epidemiological study of thogoto and dhori virus infection in people bitten by ticks, and in sheep, in an area of Northern Spain. Int J Environ Res Public Health. 2020; 17: 2254.
305
Migné CV, Braga de Seixas H, Heckmann A, Galon C, Mohd Jaafar F, Monsion B, et al. Evaluation of vector competence of Ixodes ticks for kemerovo virus. Viruses. 2022; 14: 1102.
306
Safonova MV, Gmyl AP, Lukashev AN, Speranskaya AS, Neverov AD, Fedonin GG, et al. Genetic diversity of Kemerovo virus and phylogenetic relationships within the Great Island virus genetic group. Ticks Tick Borne Dis. 2020; 11: 101333.
307
Presti RM, Zhao G, Beatty WL, Mihindukulasuriya KA, da Rosa AP, Popov VL, et al. Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family Orthomyxoviridae. J Virol. 2009; 83: 11599-606.
308
Walker PJ, Widen SG, Wood TG, Guzman H, Tesh RB, Vasilakis N. A Global genomic characterization of nairoviruses identifies nine discrete genogroups with distinctive structural characteristics and host-vector associations. Am J Trop Med Hyg. 2016; 94: 1107-22.
309
Yadav PD, Nyayanit DA, Shete AM, Jain S, Majumdar TP, Chaubal GY, et al. Complete genome sequencing of Kaisodi virus isolated from ticks in India belonging to Phlebovirus genus, family Phenuiviridae. Ticks Tick Borne Dis. 2019; 10: 23-33.
310
Mihindukulasuriya KA, Nguyen NL, Wu G, Huang HV, da Rosa AP, Popov VL, et al. Nyamanini and midway viruses define a novel taxon of RNA viruses in the order Mononegavirales. J Virol. 2009; 83: 5109-16.
311
Bussetti AV, Palacios G, Travassos da Rosa A, Savji N, Jain K, Guzman H, et al. Genomic and antigenic characterization of Jos virus. J Gen Virol. 2012; 93: 293-8.
312
Aitken TH, Jonkers AH, Tikasingh ES, Worth CB. Hughes virus from Trinidadian ticks and terns. J Med Entomol. 1968; 5: 501-3.
313
Leech SL. Investigation into the vector competence of Ixodes ricinus ticks to Hazara virus and Crimean-Congo Haemorrhagic Fever virus. PhD thesis, London School of Hygiene and Tropical Medicine. 2015.
314
Kalkan-Yazıcı M, Karaaslan E, Çetin NS, Hasanoğlu S, Güney F, Zeybek Ü, et al. Cross-reactive anti-nucleocapsid protein immunity against Crimean-Congo hemorrhagic fever virus and hazara virus in multiple species. J Virol. 2021; 95: e02156-20.
315
Darwish MA, Hoogstraal H, Roberts TJ, Ghazi R, Amer T. A sero-epidemiological survey for Bunyaviridae and certain other arboviruses in Pakistan. Trans R Soc Trop Med Hyg. 1983; 77: 446-50.
316
Brinkmann A, Kohl C, Radonić A, Dabrowski PW, Mühldorfer K, Nitsche A, et al. First detection of bat-borne Issyk-Kul virus in Europe. Sci Rep. 2020; 10: 22384.
317
Hoff GL, Iversen JO, Yuill TM, Anslow RO, Jackson JO, Hanson RP. Isolations of Silverwater virus from naturally infected snowshoe hares and Haemaphysalis ticks from Alberta and Wisconsin. Am J Trop Med Hyg. 1971; 20: 320-5.
318
Moming A, Shen S, Fang Y, Zhang J, Zhang Y, Tang S, et al. Evidence of human exposure to tamdy virus, Northwest China. Emerg Infect Dis. 2021; 27: 3166-70.
319
Bai Y, Zhang Y, Su Z, Tang S, Wang J, Wu Q, et al. Discovery of tick-borne karshi virus implies misinterpretation of the tick-borne encephalitis virus seroprevalence in Northwest China. Front Microbiol. 2022; 13: 872067.
320
L’vov DK, Al’khovskiĭ SV, Shchelkanov MIu, Shchetinin AM, Deriabin PG, Aristova VA, et al. [Genetic characterization of the Sakhalin virus (SAKV), Paramushir virus (PMRV) (Sakhalin group, Nairovirus, Bunyaviridae), and Rukutama virus (RUKV) (Uukuniemi group, Phlebovirus, Bunyaviridae) isolated from the obligate parasites of the colonial sea-birds ticks Ixodes (Ceratixodes) uriae , White 1852 and I. signatus Birulya, 1895 in the water area of sea of the Okhotsk and Bering sea]. Vopr Virusol. 2014; 59: 11-7.
321
Huang B, Firth C, Watterson D, Allcock R, Colmant AM, Hobson-Peters J, et al. Genetic characterization of archived bunyaviruses and their potential for emergence in Australia. Emerg Infect Dis. 2016; 22: 833-40.
322
Lvov DK, Timopheeva AA, Gromashevski VL, Tsyrkin YM, Veselovskaya OV, Gostinshchikova GV, et al. “Okhotskiy” virus, a new arbovirus of the Kemerovo group isolated from ixodes (Ceratixodes) putus Pick.-Camb. 1878 in the Far East. Archiv f Virusforschung. 1973; 41: 160-4.
323
Daodu OB, Eisenbarth A, Schulz A, Hartlaub J, Olopade JO, Oluwayelu DO, et al. Molecular detection of dugbe orthonairovirus in cattle and their infesting ticks ( Amblyomma and Rhipicephalus (Boophilus) ) in Nigeria. PLoS Negl Trop Dis. 2021; 15: e0009905.
324
Converse JD, Hoogstraal H, Moussa MI, Stek M Jr, Kaiser MN. Bahig virus (Tete group) in naturally- and transovarially-infected Hyalomma marginatum ticks from Egypt and Italy. Arch Gesamte Virusforsch. 1974; 46: 29-35.
325
Al’khovskiĭ SV, L’vov DK, Shchelkanov MIu, Shchetinin AM, Deriabin PG, L’vov DN, et al. [Genetic characterization of the Batken virus (BKNV) (Orthomyxoviridae, Thogotovirus) isolated from the Ixodidae ticks Hyalomma marginatum Koch, 1844 and the mosquitoes Aedes caspius Pallas, 1771, as well as the Culex hortensis Ficalbi, 1889 in the Central Asia]. Vopr Virusol. 2014; 59: 33-7.
326
Ndiaye M, Badji A, Dieng I, Dolgova AS, Mhamadi M, Kirichenko AD, et al. Molecular detection and genetic characterization of two dugbe orthonairovirus isolates detected from ticks in Southern Senegal. Viruses. 2024; 16: 964.
327
Hubálek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. 2012; 111: 9-36.
328
Varma MG, Converse JD. Keterah virus infections in four species of Argas ticks (Ixodoidea: Argasidae). J Med Entomol. 1976; 13: 65-70.
329
Lvov DK, Sazonov AA, Gromashevsky VL, Skvortsova TM, Beresina LK, Aristova VA, et al. “Paramushir” virus, a new arbovirus, isolated from ixodid ticks in nesting sites of birds on the islands in the north-western part of the Pacific Ocean basin. Arch Virol. 1976; 51: 157-61.
330
O’Brien CA, Huang B, Warrilow D, Hazlewood JE, Bielefeldt-Ohmann H, Hall-Mendelin S, et al. Extended characterisation of five archival tick-borne viruses provides insights for virus discovery in Australian ticks. Parasit Vectors. 2022; 15: 59.
331
Lvov DK, Gromashevsky VL, Zakaryan VA, Skvortsova TM, Berezina LK, Gofman YP, et al. Razdan virus, a new ungrouped bunyavirus isolated from Dermacentor marginatus ticks in Armenia. Acta Virol. 1978; 22: 506-8.
332
L’vov DK, Al’khovskiĭ SV, Shchelkanov MIu, Shchetinin AM, Aristova VA, Morozova TN, et al. [Taxonomic status of the Chim virus (CHIMV) (Bunyaviridae, Nairovirus, Qalyub group) isolated from the Ixodidae and Argasidae ticks collected in the great gerbil ( Rhombomys opimus Lichtenstein, 1823) (Muridae, Gerbillinae) burrows in Uzbekistan and Kazakhstan]. Vopr Virusol. 2014; 59: 18-23.
333
Dedkov VG, Dolgova AS, Safonova MV, Samoilov AE, Belova OA, Kholodilov IS, et al. Isolation and characterization of Wad Medani virus obtained in the tuva Republic of Russia. Ticks Tick Borne Dis. 2021; 12: 101612.
334
Converse JD, Moussa MI, Easton ER, Casals J. Punta Salinas virus (Hughes group) from Argas arboreus (Ixodoidea: Argasidae) in Tanzania. Trans R Soc Trop Med Hyg. 1981; 75: 755-6.
335
Clerx JP, Bishop DH. Qalyub virus, a member of the newly proposed Nairovirus genus (Bunyavividae). Virology. 1981; 108: 361-72.
336
Gauci PJ, McAllister J, Mitchell IR, Cybinski D, St George T, Gubala AJ. Genomic characterisation of vinegar hill virus, an Australian nairovirus isolated in 1983 from Argas robertsi ticks collected from cattle egrets. Viruses. 2017; 9: 373.
337
Chastel C, Main AJ, Couatarmanac’h A, Le Lay G, Knudson DL, Quillien MC, et al. Isolation of eyach virus (reoviridae, colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France. Arch Virol. 1984; 82: 161-71.
338
Chastel C, Main AJ, Guiguen C, le Lay G, Quillien MC, Monnat JY, et al. The isolation of Meaban virus, a new Flavivirus from the seabird tick Ornithodoros (Alectorobius) maritimus in France. Arch Virol. 1985; 83: 129-40.
339
Wahlberg P, Carlsson SA, Granlund H, Jansson C, Lindén M, Nyberg C, et al. TBE in Aland Islands 1959-2005: Kumlinge disease. Scand J Infect Dis. 2006; 38: 1057-62.
340
Filipe AR, Alves MJ, Karabatsos N, de Matos AP, Núncio MS, Bacellar F. Palma virus, a new bunyaviridae isolated from ticks in Portugal. Intervirology. 1994; 37: 348-51.
341
Srivastava A, Mahilkar S, Upadhyaya CP, Mishra PK, Malinda RR, Sonkar SC, et al. Alkhumra hemorrhagic fever virus (AHFV): a concise overview. Yale J Biol Med. 2024; 97: 505-14.
342
Marin MS, McKenzie J, Gao GF, Reid HW, Antoniadis A, Gould EA. The virus causing encephalomyelitis in sheep in Spain: a new member of the tick-borne encephalitis group. Res Vet Sci. 1995; 58: 11-3.
343
Robich RM, Cosenza DS, Elias SP, Henderson EF, Lubelczyk CB, Welch M, et al. Prevalence and genetic characterization of deer tick virus (powassan virus, Lineage II) in Ixodes scapularis ticks collected in maine. Am J Trop Med Hyg. 2019; 101: 467-71.
344
Pavlidou V, Gerou S, Diza E, Antoniadis A, Papa A. Genetic study of the distribution of Greek goat encephalitis virus in Greece. Vector Borne Zoonotic Dis. 2008; 8: 351-4.
345
Pastula DM, Turabelidze G, Yates KF, Jones TF, Lambert AJ, Panella AJ, et al. Notes from the field: Heartland virus disease - United States, 2012-2013. MMWR Morb Mortal Wkly Rep. 2014; 63: 270-1.
346
Li A, Liu L, Wu W, Liu Y, Huang X, Li C, et al. Molecular evolution and genetic diversity analysis of SFTS virus based on next-generation sequencing. Biosafety and Health. 2021; 3: 105-15.
347
Sudeep AB, Jadi RS, Mishra AC. Ganjam virus. Indian J Med Res. 2009; 130: 514-9.
348
Roe MK, Huffman ER, Batista YS, Papadeas GG, Kastelitz SR, Restivo AM, et al. Comprehensive review of emergence and virology of tickborne bourbon virus in the United States. Emerg Infect Dis. 2023; 29: 1-7.
349
L’vov DK, Al’khovskiĭ SV, Shchelkanov MIu, Shchetinin AM, Deriabin PG, Samokhvalov EI, et al. [Genetic characterization of the Caspiy virus (CASV) (Bunyaviridae, Nairovirus) isolated from the Laridae (Vigors, 1825) and Sternidae (Bonaparte, 1838) birds and the Argasidae (Koch, 1844) ticks Ornithodoros capensis Neumann, 1901, in Western and Eastern coasts of the Caspian Sea]. Vopr Virusol. 2014; 59: 24-9.
350
L’vov DK, Al’khovskiĭ SV, Shchelkanov MIu, Deriabin PG, Shchetinin AM, Samokhvalov EI, et al. [Genetic characterization of the Geran virus (GERV, Bunyaviridae, Nairovirus, Qalyub group) isolated from the ticks Ornithodoros verrucosus Olenev, Zasukhin and Fenyuk, 1934 (Argasidae) collected in the burrow of Meriones erythrourus Grey, 1842 in Azerbaijan]. Vopr Virusol. 2014; 59: 13-8.
351
Wu Z, Zhang M, Zhang Y, Lu K, Zhu W, Feng S, et al. Jingmen tick virus: an emerging arbovirus with a global threat. mSphere. 2023; 8: e0028123.
352
L’vov DK, Al’khovskiĭ SV, Shchelkanov MIu, Shchetinin AM, Deriabin PG, Gitel’man AK, et al. [Taxonomy of the Sokuluk virus (SOKV) (Flaviviridae, Flavivirus, Entebbe bat virus group) isolated from bats ( Vespertilio pipistrellus Schreber, 1774), ticks (Argasidae Koch, 1844), and birds in Kyrgyzstan]. Vopr Virusol. 2014; 59: 30-4.
353
Lvov DK, Chervonski VI, Gostinshchikova IN, Zemit AS, Gromashevski VL, Tsyrkin YM, et al. Isolation of Tyuleniy virus from ticks Ixodes (Ceratixodes) putus Pick.-Camb. 1878 collected on Commodore Islands. Arch Gesamte Virusforsch. 1972; 38: 139-42.
354
Belaganahalli MN, Maan S, Maan NS, Brownlie J, Tesh R, Attoui H, et al. Genetic characterization of the tick-borne orbiviruses. Viruses. 2015; 7: 2185-209.
355
Ejiri H, Lim CK, Isawa H, Kuwata R, Kobayashi D, Yamaguchi Y, et al. Genetic and biological characterization of Muko virus, a new distinct member of the species Great Island virus (genus Orbivirus, family Reoviridae), isolated from ixodid ticks in Japan. Arch Virol. 2015; 160: 2965-77.
356
Balseiro A, Pérez-Martínez C, Dagleish MP, Royo LJ, Polledo L, García Marín JF. Goats naturally infected with the spanish goat encephalitis virus (SGEV): pathological features and an outbreak. Animals (Basel). 2022; 13: 72.
357
Quillien MC, Monnat JY, Le Lay G, Le Goff F, Hardy E, Chastel C. Avalon virus, Sakhalin group (Nairovirus, Bunyaviridae) from the seabird tick Ixodes (Ceratixodes) uriae White 1852 in France. Acta Virol. 1986; 30: 418-27.
358
Mazelier M, Rouxel RN, Zumstein M, Mancini R, Bell-Sakyi L, Lozach PY. Uukuniemi virus as a tick-borne virus model. J Virol. 2016; 90: 6784-98.
359
Gömer A, Lang A, Janshoff S, Steinmann J, Steinmann E. Epidemiology and global spread of emerging tick-borne Alongshan virus. Emerg Microbes Infect. 2024; 13: 2404271.
360
Eremyan AA, Lvov DK, Shchetinin AM, Deryabin PG, Aristova VA, Gitelman AK, et al. Genetic diversity of viruses of Chenuda virus species (Orbivirus, Reoviridae) circulating in Central Asia. Vopr Virusol. 2017; 62: 81-6.
361
Amoa-Bosompem M, Kobayashi D, Faizah AN, Kimura S, Antwi A, Agbosu E, et al. Screening for tick-borne and tick-associated viruses in ticks collected in Ghana. Arch Virol. 2022; 167: 123-30.
362
Zhang Y, Hu B, Agwanda B, Fang Y, Wang J, Kuria S, et al. Viromes and surveys of RNA viruses in camel-derived ticks revealing transmission patterns of novel tick-borne viral pathogens in Kenya. Emerg Microbes Infect. 2021; 10: 1975-87.
363
Tran NTB, Shimoda H, Mizuno J, Ishijima K, Yonemitsu K, Minami S, et al. Epidemiological study of Kabuto Mountain virus, a novel uukuvirus, in Japan. J Vet Med Sci. 2022; 84: 82-9.
364
Kishimoto M, Itakura Y, Tabata K, Komagome R, Yamaguchi H, Ogasawara K, et al. A wide distribution of Beiji nairoviruses and related viruses in Ixodes ticks in Japan. Ticks Tick Borne Dis. 2024; 15: 102380.
365
Kodama F, Yamaguchi H, Park E, Tatemoto K, Sashika M, Nakao R, et al. A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat Commun. 2021; 12: 5539.
366
Dincer E, Timurkan MO, Yalcınkaya D, Hekimoglu O, Nayır MB, Sertkaya TZ, et al. Molecular detection of tacheng tick virus-1 (TcTV-1) and jingmen tick virus in ticks collected from wildlife and livestock in Turkey: first indication of TcTV-1 beyond China. Vector Borne Zoonotic Dis. 2023; 23: 419-27.
367
Jia Y, Wang S, Yang M, Ulzhan N, Omarova K, Liu Z, et al. First detection of Tacheng Tick Virus 2 in hard ticks from southeastern Kazakhstan. Kafkas Univ Vet Fak Derg. 2022; 28: 139-42.
368
Zakham F, Albalawi AE, Alanazi AD, Truong Nguyen P, Alouffi AS, Alaoui A, et al. Viral RNA metagenomics of Hyalomma ticks collected from dromedary camels in Makkah Province, Saudi Arabia. Viruses. 2021; 13: 1396.
369
Li DJ, Li J, Wang R, Zhang W, Nie K, Yin Q, et al. Detection and genetic analysis of songling virus in Haemaphysalis concinna near the China-North Korea Border. Zoonoses. 2024; 4.
370
Arshad F, Sarfraz A, Rubab A, Shehroz M, Moura AA, Sheheryar S, et al. Rational design of novel peptide-based vaccine against the emerging OZ virus. Hum Immunol. 2024; 85: 111162.
371
Xu X, Gao Z, Wu Y, Yin H, Ren Q, Zhang J, et al. Discovery and vertical transmission analysis of Dabieshan Tick Virus in Haemaphysalis longicornis ticks from Chengde, China. Front Microbiol. 2024; 15: 1365356.
372
Min YQ, Shi C, Yao T, Feng K, Mo Q, Deng F, et al. The nonstructural protein of guertu virus disrupts host defenses by blocking antiviral interferon induction and action. ACS Infect Dis. 2020; 6: 857-70.
373
Pomrenke JE. Isolation of Imperial Valley Virus and Sapphire II Virus in Argas cooleyi from Imperial Valley, California through cloning [Internet]. University of Wyoming Libraries; 2024. Available from: https://libraries.uwyo.edu/
374
Kocan KM, de la Fuente J, Cabezas-Cruz A. The genus Anaplasma : new challenges after reclassification. Rev Sci Tech. 2015; 34: 577-86.
375
Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet Parasitol. 2010; 167: 108-22.
376
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum --a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013; 3: 31.
377
Nadeem M, Azeem A, Khan MK, Ullah H, Raza H, Usman M, Arif B, Afzal MA, Asif U, Mughal MAS. Zoonotic threat of anaplasmosis. In: Abbas RZ, Hassan MF, Khan A and Mohsin M (eds), Zoonosis, Unique Scientific Publishers, Faisalabad, Pakistan. 2023; 2: 140-8.
378
Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma , Cowdria with Ehrlichia and Ehrlichia with Neorickettsia , descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol. 2001; 51: 2145-65.
379
Pilloux L, Baumgartner A, Jaton K, Lienhard R, Ackermann-Gäumann R, Beuret C, et al. Prevalence of Anaplasma phagocytophilum and Coxiella burnetii in Ixodes ricinus ticks in Switzerland: an underestimated epidemiologic risk. New Microbes New Infect. 2018; 27: 22-6.
380
James CA, Pearl DL, Lindsay LR, Peregrine AS, Jardine CM. Risk factors associated with the carriage of Ixodes scapularis relative to other tick species in a population of pet dogs from southeastern Ontario, Canada. Ticks Tick Borne Dis. 2019; 10: 290-8.
381
Aktas M, Özübek S, Altay K, Ipek ND, Balkaya İ, Utuk AE, et al. Molecular detection of tick-borne rickettsial and protozoan pathogens in domestic dogs from Turkey. Parasit Vectors. 2015; 8: 157.
382
Aktas M, Özübek S. Bovine anaplasmosis in Turkey: First laboratory confirmed clinical cases caused by Anaplasma phagocytophilum. Vet Microbiol. 2015; 178: 246-51.
383
Abdoli A, Olfatifar M, Zaki L, Nikkhahi F, Fardsanei F, Sobhani S, et al. Global prevalence of Anaplasma phagocytophilum in cattle: a one health perspective, meta-analysis and future predictions (up to 2035). Vet Med Sci. 2025; 11: e70251.
384
Langenwalder DB, Schmidt S, Gilli U, Pantchev N, Ganter M, Silaghi C, et al. Genetic characterization of Anaplasma phagocytophilum strains from goats ( Capra aegagrus hircus ) and water buffalo ( Bubalus bubalis ) by 16S rRNA gene, ankA gene and multilocus sequence typing. Ticks Tick Borne Dis. 2019; 10: 101267.
385
Zobba R, Murgia C, Dahmani M, Mediannikov O, Davoust B, Piredda R, et al. Emergence of Anaplasma species related to A. phagocytophilum and A. platys in Senegal. Int J Mol Sci. 2022; 24: 35.
386
Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA. The natural history of Anaplasma marginale. Vet Parasitol. 2010; 167: 95-107.
387
Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 2015; 11: e1005120.
388
Cramaro WJ, Revets D, Hunewald OE, Sinner R, Reye AL, Muller CP. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genomics. 2015; 16: 871.
389
Kotsyfakis M, Schwarz A, Erhart J, Ribeiro JM. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci Rep. 2015; 5: 9103.
390
Villar M, Ayllón N, Alberdi P, Moreno A, Moreno M, Tobes R, et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics. 2015; 14: 3154-72.
391
Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016; 7: 10507.
392
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007; 23: 450-7.
393
Reinbold JB, Coetzee JF, Hollis LC, Nickell JS, Riegel CM, Christopher JA, et al. Comparison of iatrogenic transmission of Anaplasma marginale in Holstein steers via needle and needle-free injection techniques. Am J Vet Res. 2010; 71: 1178-88.
394
Goel R, Westblade LF, Kessler DA, Sfeir M, Slavinski S, Backenson B, et al. Death from transfusion-transmitted anaplasmosis , New York, USA, 2017. Emerg Infect Dis. 2018; 24: 1548-50.
395
Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin North Am. 2015; 29: 341-55.
396
VilibićČavlek T, Bogdanić M, Savić V, Barbić L, Stevanović V, Kaić B. Tick-borne human diseases around the globe. In: Dobler G, Erber W, Bröker M, ChitimiaDobler L, Schmitt HJ, editors. The TBE Book. 7th ed. Singapore: Global Health Press Pte Ltd; 2024. p. 1422.
397
Guzman N, Yarrarapu SNS, Beidas SO. Anaplasma phagocytophilum. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
398
Kim SW, Kim CM, Kim DM, Yun NR. Manifestation of anaplasmosis as cerebral infarction: a case report. BMC Infect Dis. 2018; 18: 409.
399
Kobayashi KJ, Weil AA, Branda JA. Case 16-2018: a 45-year-old man with fever, thrombocytopenia, and elevated aminotransferase levels. N Engl J Med. 2018; 378: 2023-9.
400
Pritt BS, Sloan LM, Johnson DK, Munderloh UG, Paskewitz SM, McElroy KM, et al. Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. N Engl J Med. 2011; 365: 422-9.
401
Félix ML, Muñoz-Leal S, Carvalho LA, Queirolo D, Remesar Alonso S, Nava S, et al. Molecular characterization of novel Ehrlichia genotypes in Ixodes auritulus from Uruguay. Curr Res Parasitol Vector Borne Dis. 2021; 1: 100022.
402
Xu G, Foster E, Ribbe F, Hojgaard A, Eisen RJ, Paull S, et al. Detection of Ehrlichia muris eauclairensis in Blacklegged Ticks ( Ixodes scapularis ) and White-Footed Mice ( Peromyscus leucopus ) in Massachusetts. Vector Borne Zoonotic Dis. 2023; 23: 311-5.
403
Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C. First case of human “ Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol. 2010; 48: 1956-9.
404
Rar V, Golovljova I. Anaplasma , Ehrlichia , and “ Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011; 11: 1842-61.
405
Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA. ‘ Candidatus Neoehrlichia mikurensis’ in Europe. New Microbes New Infect. 2018; 22: 30-6.
406
Stewart A, Armstrong M, Graves S, Hajkowicz K. Rickettsia australis and queensland tick typhus: a rickettsial spotted fever group infection in Australia. Am J Trop Med Hyg. 2017; 97: 24-9.
407
Graves S, Stenos J. Rickettsioses in Australia. Ann N Y Acad Sci. 2009; 1166: 151-5.
408
Barker SC, Walker AR. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa. 2014; 1-144.
409
Sexton DJ, Dwyer B, Kemp R, Graves S. Spotted fever group rickettsial infections in Australia. Rev Infect Dis. 1991; 13: 876-86.
410
Lane AM, Shaw MD, McGraw EA, O’Neill SL. Evidence of a spotted fever-like rickettsia and a potential new vector from northeastern Australia. J Med Entomol. 2005; 42: 918-21.
411
Unsworth NB, Stenos J, Graves SR, Faa AG, Cox GE, Dyer JR, et al. Flinders Island spotted fever rickettsioses caused by “marmionii” strain of Rickettsia honei , Eastern Australia. Emerg Infect Dis. 2007; 13: 566-73.
412
Snowden J, Simonsen KA. Rocky mountain spotted fever ( Rickettsia rickettsii ). 2023.
413
Denison AM, Amin BD, Nicholson WL, Paddock CD. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay. Clin Infect Dis. 2014; 59: 635-42.
414
Gasmi S, Ogden NH, Bourgeois AC, Mitri ME, Buck P, Koffi JK. Incidence of hospitalizations related to Lyme disease and other tick-borne diseases using Discharge Abstract Database, Canada, 2009-2021. PLoS One. 2024; 19: e0312703.
415
Kurtenbach K. Lyme borreliosis In: Service MW, editor, The Encyclopedia of Arthropod-transmitted Infections of Man and Animals. CABI Publishing, UK; 2006; p. 299-305.
416
Marques AR, Strle F, Wormser GP. Comparison of Lyme disease in the United States and Europe. Emerg Infect Dis. 2021; 27: 2017-24.
417
Busch U, Hizo-Teufel C, Böhmer R, Fingerle V, Rössler D, Wilske B, et al. Borrelia burgdorferi sensu lato strains isolated from cutaneous Lyme borreliosis biopsies differentiated by pulsed-field gel electrophoresis. Scand J Infect Dis. 1996; 28: 583-9.
418
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011; 2: 123-8.
419
Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P. Elucidating the Immune Evasion Mechanisms of Borrelia mayonii , the Causative Agent of Lyme Disease. Front Immunol. 2019; 10: 2722.
420
Shor S, Green C, Szantyr B, Phillips S, Liegner K, Burrascano JJ Jr, et al. Chronic Lyme disease: an evidence-based definition by the ILADS Working Group. Antibiotics (Basel). 2019; 8: 269.
421
Gao J, Gong Z, Montesano D, Glazer E, Liegner K. ““Repurposing” disulfiram in the treatment of Lyme disease and babesiosis: retrospective review of first 3 years’ experience in one medical practice. Antibiotics. 2020; 9: 868.
422
Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med. 1998; 339: 209-15.
423
Poland GA. Vaccines against Lyme disease: What happened and what lessons can we learn? Clin Infect Dis. 2011; 52(Suppl 3): s253-8.
424
Abdelmaseih R, Ashraf B, Abdelmasih R, Dunn S, Nasser H. Southern tick-associated rash illness: Florida’s lyme disease variant. Cureus. 2021; 13: e15306.
425
Chomel BB, Kasten RW. Bartonellosis, an increasingly recognized zoonosis. J Appl Microbiol. 2010; 109: 743-50.
426
Chomel BB, Boulouis HJ, Breitschwerdt EB. Cat scratch disease and other zoonotic Bartonella infections. J Am Vet Med Assoc. 2004; 224: 1270-9.
427
Cotté V, Bonnet S, Le Rhun D, Le Naour E, Chauvin A, Boulouis HJ, et al. Transmission of Bartonella henselae by Ixodes ricinus. Emerg Infect Dis. 2008; 14: 1074-80.
428
Kaya Ö, Erdoğan N, Erciyas Yavuz K, Keskin A. Investigation of Bartonella, Borrelia and Rickettsia in hard ticks (Acari: Ixodidae) collected from birds in Kızılırmak Delta, Türkiye. Syst Appl Acarol. 2025;30:1052‑66.
429
Willi B, Boretti FS, Tasker S, Meli ML, Wengi N, Reusch CE, et al. From Haemobartonella to hemoplasma : molecular methods provide new insights. Vet Microbiol. 2007; 125: 197-209.
430
Messick JB. Hemotrophic mycoplasmas (hemoplasmas): a review and new insights into pathogenic potential. Vet Clin Pathol. 2004; 33: 2-13.
431
Maggi RG, Compton SM, Trull CL, Mascarelli PE, Mozayeni BR, Breitschwerdt EB. Infection with hemotropic Mycoplasma species in patients with or without extensive arthropod or animal contact. J Clin Microbiol. 2013; 51: 3237-41.
432
dos Santos AP, dos Santos RP, Biondo AW, Dora JM, Goldani LZ, de Oliveira ST, et al. Hemoplasma infection in HIV-positive patient, Brazil. Emerg Infect Dis. 2008; 14: 1922-4.
433
Steer JA, Tasker S, Barker EN, Jensen J, Mitchell J, Stocki T, et al. A novel hemotropic Mycoplasma (hemoplasma) in a patient with hemolytic anemia and pyrexia. Clin Infect Dis. 2011; 53: e147-51.
434
Moraga-Fernández A, Muñoz-Hernández C, Sánchez-Sánchez M, Fernández de Mera IG, de la Fuente J. Exploring the diversity of tick-borne pathogens: the case of bacteria ( Anaplasma, Rickettsia, Coxiella and Borrelia ) protozoa ( Babesia and Theileria ) and viruses (Orthonairovirus, tick-borne encephalitis virus and louping ill virus) in the European continent. Vet Microbiol. 2023; 286: 109892.
435
Angelakis E, Raoult D. Q fever. Vet Microbiol. 2010; 140: 297-309.
436
Raoult D, Marrie T. Q fever. Clin Infect Dis. 1995; 20: 489-95.
437
Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, et al. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev. 2017; 30: 115-90.
438
Cyr J, Turcotte MÈ, Desrosiers A, Bélanger D, Harel J, Tremblay D, et al. Prevalence of Coxiella burnetii seropositivity and shedding in farm, pet and feral cats and associated risk factors in farm cats in Quebec, Canada. Epidemiol Infect. 2021; 149: e57.
439
Yessinou RE, Katja MS, Heinrich N, Farougou S. Prevalence of Coxiella -infections in ticks - review and meta-analysis. Ticks Tick Borne Dis. 2022; 13: 101926.
440
Espí A, Del Cerro A, Oleaga Á, Rodríguez-Pérez M, López CM, Hurtado A, et al. One health approach: an overview of Q fever in livestock, wildlife and humans in Asturias (Northwestern Spain). Animals (Basel). 2021; 11: 1395.
441
Spitalská E, Kocianová E. Detection of Coxiella burnetii in ticks collected in Slovakia and Hungary. Eur J Epidemiol. 2003; 18: 263-6.
442
Mediannikov O, Fenollar F, Socolovschi C, Diatta G, Bassene H, Molez JF, et al. Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis. 2010; 4: e654.
443
Cooper A, Stephens J, Ketheesan N, Govan B. Detection of Coxiella burnetii DNA in wildlife and ticks in northern Queensland, Australia. Vector Borne Zoonotic Dis. 2013; 13: 12-6.
444
Khoo JJ, Lim FS, Chen F, Phoon WH, Khor CS, Pike BL, et al. Coxiella detection in ticks from wildlife and livestock in Malaysia. Vector Borne Zoonotic Dis. 2016; 16: 744-51.
445
Albrecht R, Horowitz S, Gilbert E, Hong R, Richard J, Connor DH. Dermatophilus congolensis chronic nodular disease in man. Pediatrics. 1974; 53: 907-12.
446
Hamid ME. Skin diseases of cattle in the tropics: a guide to diagnosis and treatment. Academic Press; 2016. p. 3-7.
447
Burd EM, Juzych LA, Rudrik JT, Habib F. Pustular dermatitis caused by Dermatophilus congolensis. J Clin Microbiol. 2007; 45: 1655-8.
448
Amor A, Enríquez A, Corcuera MT, Toro C, Herrero D, Baquero M. Is infection by Dermatophilus congolensis underdiagnosed? J Clin Microbiol. 2011; 49: 449-51.
449
Franke J, Hildebrandt A, Dorn W. Exploring gaps in our knowledge on Lyme borreliosis spirochaetes--updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis. 2013; 4: 11-25.
450
Güneş T, Poyraz Ö, Ataş M, Turgut NH. The seroprevalence of Anaplasma phagocytophilum in humans from two different climatic regions of Turkey and its co-seroprevalence rate with Borrelia burgdorferi. Turk J Med Sci. 2011; 41: 903-8.
451
Aktas M, Vatansever Z, Altay K, Aydin MF, Dumanli N. Molecular evidence for Anaplasma phagocytophilum in Ixodes ricinus from Turkey. Trans R Soc Trop Med Hyg. 2010; 104: 10-5.
452
Emiroğlu M, Çelebi B. First report of human ehrlichiosis in Turkey. Turk J Pediatr. 2019; 61: 267-70.
453
Ongut G, Ogunc D, Mutlu G, Colak D, Gultekin M, Gunseren F, et al. Seroprevalence of antibodies to Anaplasma phagocytophilum in Antalya, Turkey. Infection. 2006; 34: 107-9.
454
Kılıç H, Gürcan Ş, Kunduracılar H, Eskiocak M. Anaplasmosis seropositivity in people exposured to tick bite. Balkan Medical Journal. 2010; 2010.
455
Çetinkaya H, Matur E, Akyazi İ, Ekiz EE, Aydin L, Toparlak M. Serological and molecular investigation of Ehrlichia spp. and Anaplasma spp. in ticks and blood of dogs, in the Thrace Region of Turkey. Ticks Tick Borne Dis. 2016; 7: 706-14.
456
Orkun Ö, Çakmak A, Nalbantoğlu S, Karaer Z. Turkey tick news: a molecular investigation into the presence of tick-borne pathogens in host-seeking ticks in Anatolia; initial evidence of putative vectors and pathogens, and footsteps of a secretly rising vector tick, Haemaphysalis parva. Ticks Tick Borne Dis. 2020; 11: 101373.
457
Orkun Ö, Karaer Z, Çakmak A, Nalbantoğlu S. Identification of tick-borne pathogens in ticks feeding on humans in Turkey. PLoS Negl Trop Dis. 2014; 8: e3067.
458
Emiroglu M, Celebi B, Alkan G, Yilmaz Y. The first human case of Rickettsia slovaca from Turkey. Ticks Tick Borne Dis. 2021; 12: 101755.
459
Çakır N, Akandere Y, Hekim N, Kovancı E, Yazıcı H. Türkiye'de iki Lyme olgusu. Klin Gelişim. 1990; 4: 839-41.
460
Köksal İ, Saltıkoğlu N, Bingöl T, Öztürk H. Bir Lyme hastalığı olgusu. Ankem. 1990; 4: 248.
461
Polat E, Turhan V, Aslan M, Müsellim B, Onem Y, Ertuğrul B. Türkiye’de ilk kez etkenleri kültürde uretilen uç insan lyme hastaliği olgusu [First report of three culture confirmed human Lyme cases in Turkey]. Mikrobiyol Bul. 2010; 44: 133-9.
462
Eroğlu C, Esen Ş, Hökelek M, Sünbül M, Şencan İ, Öztürk R, et al. A case of Lyme meningitis characterized with meningitis and encephalitis findings. İnfeksiyon Derg. 2002; 16: 225-8.
463
Bulut C, Tufan ZK, Altun S, Altinel E, Kinikli S, Demiröz AP. Kene isiriklarinda gözden kaçan bir hastalik: Lyme hastaliği [An overlooked disease of tick bites: Lyme disease]. Mikrobiyol Bul. 2009; 43: 487-92.
464
Koc F, Bozdemir H, Pekoz T, Aksu HS, Ozcan S, Kurdak H. Lyme disease presenting as subacute transverse myelitis. Acta Neurol Belg. 2009; 109: 326-9.
465
Demirci M, Yorgancigil B, Tahan V, Arda M. The Lyme disease seropositivity in Isparta province in those with a history of tick-bite. Infeks Derg. 2001; 15: 17-20.
466
Utaş S, Kardaş Y, Doğanay M. The evaluation of Lyme serology in patients with symptoms which may be related with Borrelia burgdorferi. Mikrobiyol Bülteni. 1994; 28: 106-12.
467
Polat E, Calisir B, Yucel A, Tuzer E. Türkiye’de Ixodes ricinus ’lardan ilk defa ayrilan ve üretilen iki Borrelia kökeni. Turkiye Parazitol Derg. 1998; 22: 167-73.
468
Polat E, Çalışır B, Polat E, Güney G, Gönenc L. Investigation on the species composition of the Ixodid ticks from Belgrade forest in Istanbul and their role as vectors of Borrelia burgdorferi. Acta Zool Bulg. 2000; 52: 23-8.
469
Güner ES, Hashimoto N, Takada N, Kaneda K, Imai Y, Masuzawa T. First isolation and characterization of Borrelia burgdorferi sensu lato strains from Ixodes ricinus ticks in Turkey. J Med Microbiol. 2003; 52: 807-13.
470
Güner ES, Hashimoto N, Kadosaka T, Imai Y, Masuzawa T. A novel, fast-growing Borrelia sp. isolated from the hard tick Hyalomma aegyptium in Turkey. Microbiology. 2003; 149: 2539-44.
471
Güner ES, Watanabe M, Hashimoto N, Kadosaka T, Kawamura Y, Ezaki T, et al. Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int J Syst Evol Microbiol. 2004; 54: 1649-52.
472
Kılıç S. A general overview of Francisella tularensis and the epidemiology of tularemia in Turkey. Flora. 2010; 15: 37-58.
473
Ulu-Kilic A, Doganay M. An overview: tularemia and travel medicine. Travel Med Infect Dis. 2014; 12: 609-16.
474
Duzlu O, Yildirim A, Inci A, Gumussoy KS, Ciloglu A, Onder Z. Molecular investigation of Francisella- Like Endosymbiont in ticks and Francisella tularensis in Ixodid ticks and mosquitoes in Turkey. Vector Borne Zoonotic Dis. 2016; 16: 26-32.
475
Ozsan K, Akyay N. [Relapsing fever in Turkey; presence in the South (Turko-Syrian border) of Ornithodorus erraticus infected with a spirochete of the Crocidurae group]. Bull Soc Pathol Exot Filiales. 1954; 47: 501-3.
476
Aydın N, Bülbül R, Telli M, Gültekin B. Seroprevalence of Bartonella henselae and Bartonella quintana in blood donors in Aydin province, Turkey. Mikrobiyol Bul. 2014; 48: 477-83.
477
Celebi B, Kilic S, Aydin N, Tarhan G, Carhan A, Babür C. Investigation of Bartonella henselae in cats in Ankara, Turkey. Zoonoses Public Health. 2009; 56: 169-75.
478
Tüzer E, Göksu K, Bilal T, Yeşildere T. A case of haemobartonellosis in a cat in Istanbul. J Protozool Res. 1993; 3: 69-70.
479
Payzin S. Epidemiological investigations on Q fever in Turkey. Bull World Health Organ. 1953; 9: 553-8.
480
Günal Ö, Demirtürk F, Barut Ş, Kılıç S, Erkorkmaz U, Tekin F, et al. A preliminary report of relationship between abortion and Q fever in Central Black Sea Region Turkish woman. CMJ. 2014; 36: 337-43.
481
Karabay O, Koçoğlu E, Baysoy G, Konyalıoğlu S. Coxiella burnetii seroprevalence in the rural part of Bolu, Turkey. Turk J Med Sc. 2009; 39: 641-5.
482
Oruç E, Aktas MS, Aydın H. Dermatophilosis in a simmental calf. Lucrari Stiintifice-Medicina Veterinara Universitatea de StiinteAgricole si Medicina Veterinara “Ion Ionescu de la Brad” Iasi 2014; 57: 283-7.
483
Harman M, Sekin S, Akdeniz S. Human dermatophilosis mimicking ringworm. Br J Dermatol. 2001; 145: 170-1.
484
Atif FA. Anaplasma marginale and Anaplasma phagocytophilum : rickettsial es pathogens of veterinary and public health significance. Parasitol Res. 2015; 114: 3941-57.
485
Reller ME, Dumler JS. Ehrlichia , Anaplasma , and related intracellular bacteria. In: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, Warnock DW, editors. Manual of clinical microbiology. 11th ed. Washington, DC, USA: ASM Press; 2015. p. 1135-49.
486
Stuen S. Haemoparasites-challenging and wasting infections in small ruminants: a review. Animals (Basel). 2020; 10: 2179.
487
Altay K, Erol U, Sahin OF. Anaplasma capra : a new emerging tick-borne zoonotic pathogen. Vet Res Commun. 2024; 48: 1329-40.
488
Ceylan O, Xuan X, Sevinc F. Primary tick-borne protozoan and rickettsial infections of animals in Turkey. Pathogens. 2021; 10: 231.
489
Aubry P, Geale DW. A review of bovine anaplasmosis. Transbound Emerg Dis. 2011; 58: 1-30.
490
Aktas M, Ozubek S. Genetic diversity of major surface protein 1a of Anaplasma marginale in dairy cattle. Infect Genet Evol. 2021; 89: 104608.
491
Aktas M, Ozubek S. A survey of canine haemoprotozoan parasites from Turkey, including molecular evidence of an unnamed Babesia. Comp Immunol Microbiol Infect Dis. 2017; 52: 36-42.
492
Aktas M, Çolak S. Molecular detection and phylogeny of Anaplasma spp. in cattle reveals the presence of novel strains closely related to A. phagocytophilum in Turkey. Ticks Tick Borne Dis. 2021; 12: 101604.
493
Yalçın S, Sürsal Şimşek N, Cengiz S. Molecular study of some vector-borne diseases in cattle raised in western Türkiye. Rev Cient FCV-LUZ. 2024; 34: 7.
494
Ji S, Ceylan O, Ma Z, Galon EM, Zafar I, Li H, et al. Protozoan and rickettsial pathogens in ticks collected from infested cattle from Turkey. Pathogens. 2022; 11: 500.
495
Aktas M, Özübek S. Anaplasma ovis genetic diversity detected by major surface protein 1a and its prevalence in small ruminants. Vet Microbiol. 2018; 217: 13-7.
496
Ulucesme MC, Ozubek S, Karoglu A, Turk ZI, Olmus I, Irehan B, et al. Small ruminant piroplasmosis: high prevalence of Babesia aktasi n. sp. in goats in Türkiye. Pathogens. 2023; 12: 514.
497
Aktaş M, Özübek S, Uluçeşme MC. Molecular detection and phylogeny of Anaplasma phagocytophilum and related variants in small ruminants from Turkey. Animals (Basel). 2021; 11: 814.
498
Ayan A, Aslan Çelik B, Çelik ÖY, Orunç Kılınç Ö, Akyıldız G, Yılmaz AB, et al. First detection of Ehrlichia chaffeensis, Ehrlichia canis, and Anaplasma ovis in Rhipicephalus bursa ticks collected from sheep, Turkey. Pol J Vet Sci. 2024; 27: 85-94.
499
Diniz PPVP, Moura de Aguiar D. Ehrlichiosis and Anaplasmosis: An Update. Vet Clin North Am Small Anim Pract. 2022; 52: 1225-66.
500
Ulutaş B, Bayramlı G, Karagenç T. First case of Anaplasma (Ehrlichia) platys infection in a dog in Turkey. Turk J Vet Anim Sci. 2007; 31: 279-82.
501
Aktas M, Özübek S. Genetic diversity of Ehrlichia canis in dogs from Turkey inferred by TRP36 sequence analysis and phylogeny. Comp Immunol Microbiol Infect Dis. 2019; 64: 20-4.
502
Sahin OF, Erol U, Duzlu O, Altay K. Molecular survey of Anaplasma phagocytophilum and related variants in water buffaloes: The first detection of Anaplasma phagocytophilum -like 1. Comp Immunol Microbiol Infect Dis. 2023; 98: 102004.
503
Albay MK, Sevgisunar NS, Şahinduran S, Özmen Ö. The first report of ehrlichiosis in a cat in Turkey. Ankara Univ Vet Fak Derg. 2016; 63: 329-31.
504
Muz MN, Erat S, Mumcuoglu KY. Protozoan and Microbial Pathogens of House Cats in the Province of Tekirdag in Western Turkey. Pathogens. 2021; 10: 1114.
505
Dumic I, Jevtic D, Veselinovic M, Nordstrom CW, Jovanovic M, Mogulla V, et al. Human Granulocytic Anaplasmosis-A Systematic Review of Published Cases. Microorganisms. 2022; 10: 1433.
506
Chochlakis D, Ioannou I, Tselentis Y, Psaroulaki A. Human Anaplasmosis and Anaplasma ovis Variant. Emerg Infect Dis. 2010; 16: 1031-2.
507
Günaydın E, Pekkaya S, Kuzugüden F, Zeybek M, Güven Gökmen T, Ütük AE. The first detection of anti- Anaplasma phagocytophilum antibodies in horses in Turkey. Kafkas Univ Vet Fak Derg. 2018; 24: 867-71.
508
Oğuz B. First molecular detection and phylogenetic analysis of Anaplasma phagocytophilum in horses in Muş province of Turkey. K KOU Sag Bil Derg. 2021; 7: 312-8.
509
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean spotted fever: current knowledge and recent advances. Trop Med Infect Dis. 2021; 6: 172.
510
Erol U, Sahin OF, Urhan OF, Genc MG, Altay K. Primarily molecular detection and phylogenetic analyses of spotted fever group Rickettsia species in cats in Türkiye: with new host reports of Rickettsia aeschlimannii, Rickettsia slovaca, and Candidatus Rickettsia barbariae. Comp Immunol Microbiol Infect Dis. 2025; 118: 102319.
511
Gargili A, Palomar AM, Midilli K, Portillo A, Kar S, Oteo JA. Rickettsia species in ticks removed from humans in Istanbul, Turkey. Vector Borne Zoonotic Dis. 2012; 12: 938-41.
512
Keskin A, Bursali A, Keskin A, Tekin S. Molecular detection of spotted fever group rickettsiae in ticks removed from humans in Turkey. Ticks Tick Borne Dis. 2016; 7: 951-3.
513
Orkun Ö, Çakmak A, Nalbantoğlu S, Karaer Z. Molecular detection of a novel Babesia sp. and pathogenic spotted fever group rickettsiae in ticks collected from hedgehogs in Turkey: Haemaphysalis erinacei , a novel candidate vector for the genus Babesia. Infect Genet Evol. 2019; 69: 190-8.
514
Orkun Ö, Çakmak A. Molecular identification of tick-borne bacteria in wild animals and their ticks in Central Anatolia, Turkey. Comp Immunol Microbiol Infect Dis. 2019; 63: 58-65.
515
Kuloglu F, Rolain JM, Akata F, Eroglu C, Celik AD, Parola P. Mediterranean spotted fever in the Trakya region of Turkey. Ticks Tick Borne Dis. 2012; 3: 298-304.
516
Ozturk MK, Gunes T, Kose M, Coker C, Radulovic S. Rickettsialpox in Turkey. Emerg Infect Dis. 2003; 9: 1498-9.
517
Orkun Ö. Türkiye’de Lyme borreliozis’in epidemiyolojisi. İçinde: Solay A, editör. Tüm bilinmeyenleri ile Lyme hastalığı. 1. baskı. Ankara: Türkiye Klinikleri; 2024. s. 19-28.
518
Hofmann-Lehmann R, Meli ML, Dreher UM, Gönczi E, Deplazes P, Braun U, et al. Concurrent infections with vector-borne pathogens associated with fatal hemolytic anemia in a cattle herd in Switzerland. J Clin Microbiol. 2004; 42: 3775-80.
519
Votýpka J, Modrý D, Oborník M, Šlapeta J, Lukeš J. Apicomplexa. In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the Protists. Cham: Springer; 2016. p. 1-58.
520
Petit G, Landau I, Baccam D, Lainson R. Description et cycle biologique d’Hemolivia stellata n. g., n. sp., hémogregarine de crapauds brésiliens. Ann Parasitol Hum Comp. 1990; 65: 3-15.
521
Defaye B, Moutailler S, Pasqualini V, Quilichini Y. Distribution of tick-borne pathogens in domestic animals and their ticks in the countries of the mediterranean basin between 2000 and 2021: a systematic review. Microorganisms. 2022; 10: 1236.
522
Koual R, de Thoisy B, Baudrimont X, Garnier S, Delsuc F, Duron O. Tick-borne Apicomplexa in wildlife and ticks of French Guiana. Parasite. 2024; 31: 49.
523
Sivakumar T, Hayashida K, Sugimoto C, Yokoyama N. Evolution and genetic diversity of Theileria. Infect Genet Evol. 2014; 27: 250-63.
524
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia : a world emerging. Infect Genet Evol. 2012; 12: 1788-809.
525
Leclaire S, Menard S, Berry A. Molecular characterization of Babesia and Cytauxzoon species in wild South-African meerkats. Parasitology. 2015; 142: 543-8.
526
O’Donoghue P. Haemoprotozoa: Making biological sense of molecular phylogenies. Int J Parasitol Parasites Wildl. 2017; 6: 241-56.
527
Marendy D, Baker K, Emery D, Rolls P, Stutchbury R. Haemaphysalis longicornis : the life-cycle on dogs and cattle, with confirmation of its vector status for Theileria orientalis in Australia. Vet Parasitol. 2020; 277S: 100022.
528
Thompson AT, White S, Shaw D, Egizi A, Lahmers K, Ruder MG, et al. Theileria orientalis Ikeda in host-seeking Haemaphysalis longicornis in Virginia, U.S.A. Ticks Tick Borne Dis. 2020; 11: 101450.
529
Chamuah JK, Jacob SS, Ezung L, Awomi L, Aier I, Kumar H, et al. First report of Ikeda genotype of Theileria orientalis in Mithun (Bos frontalis) from Northeastern hilly region of India. Parasitol Res. 2023; 123: 36.
530
Mans BJ, Pienaar R, Potgieter FT, Latif AA. Theileria parva, T. sp. (buffalo) and T. sp. (bougasvlei) 18S variants. Vet Parasitol. 2011; 182: 382-3.
531
Lu Y, Wang Y, Li Y, Gou H, Luo J, Yin H, et al. Identification and characterization of Tu88, an antigenic gene from Theileria uilenbergi. Exp Parasitol. 2015; 153: 63-7.
532
İnci A, Düzlü A, İça A. Babesidae. In: Dumanlı N, Karaer KZ, editors. Veteriner Protozooloji. 2. Baskı. Ankara: Medisan Yayıncılık; 2015. p. 193-218.
533
Aktaş M, Dumanlı N. Theileridae. İçinde:: Dumanlı N, Karaer KZ, editörler. Veteriner protozooloji,. İkinci baskı. Medisan Yayın Serisi: 80, 2015. s..193-230.
534
Almazán C, Scimeca RC, Reichard MV, Mosqueda J. Babesiosis and Theileriosis in North America. Pathogens. 2022; 11: 168.
535
Knowles DP, Kappmeyer LS, Haney D, Herndon DR, Fry LM, Munro JB, et al. Discovery of a novel species, Theileria haneyi n. sp., infective to equids, highlights exceptional genomic diversity within the genus Theileria : implications for apicomplexan parasite surveillance. Int J Parasitol. 2018; 48: 679-90.
536
Mans BJ, Pienaar R, Latif AA. A review of Theileria diagnostics and epidemiology. Int J Parasitol Parasites Wildl. 2015; 4: 104-18.
537
Swei A, O’Connor KE, Couper LI, Thekkiniath J, Conrad PA, Padgett KA, et al. Evidence for transmission of the zoonotic apicomplexan parasite Babesia duncani by the tick Dermacentor albipictus. Int J Parasitol. 2019; 49: 95-103.
538
Young KM, Corrin T, Wilhelm B, Uhland C, Greig J, Mascarenhas M, et al. Zoonotic Babesia : a scoping review of the global evidence. PLoS One. 2019; 14: e0226781.
539
Hong SH, Kim SY, Song BG, Rho JR, Cho CR, Kim CN, et al. Detection and characterization of an emerging type of Babesia sp. similar to Babesia motasi for the first case of human babesiosis and ticks in Korea. Emerg Microbes Infect. 2019; 8: 869-78.
540
Gray A, Capewell P, Loney C, Katzer F, Shiels BR, Weir W. Sheep as host species for zoonotic Babesia venatorum , United Kingdom. Emerg Infect Dis. 2019; 25: 2257-60.
541
Wang J, Gao S, Zhang S, He X, Liu J, Liu A, et al. Rapid detection of Babesia motasi responsible for human babesiosis by cross-priming amplification combined with a vertical flow. Parasit Vectors. 2020; 13: 377.
542
Greay TL, Zahedi A, Krige AS, Owens JM, Rees RL, Ryan UM, et al. Endemic, exotic and novel apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasit Vectors. 2018; 11: 197.
543
Yam J, Bogema DR, Jenkins C, Yam J, Bogema DR, Jenkins C. Oriental Theileriosis. In: Ticks and Tick-Borne Pathogens. IntechOpen. 2018.
544
Masatani T, Hayashi K, Morikawa M, Ozawa M, Kojima I, Okajima M, et al. Molecular detection of tick-borne protozoan parasites in sika deer ( Cervus nippon ) from western regions of Japan. Parasitol Int. 2020; 79: 102161.
545
Santoro M, Auriemma C, Lucibelli MG, Borriello G, D’Alessio N, Sgroi G, et al. Molecular Detection of Babesia spp. (Apicomplexa: Piroplasma) in Free-Ranging Canids and Mustelids From Southern Italy. Front Vet Sci. 2019; 6: 269.
546
Suarez CE, McElwain TF. Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites. Int J Parasitol. 2009; 39: 289-97.
547
Li DF, Wang S, Suarez CE, Xuan X, He L, Zhao JL. Pushing the frontiers of babesiosis research: in vitro culture and gene editing. Trends Parasitol. 2025; 41: 317-29.
548
Asada M, Yahata K, Hakimi H, Yokoyama N, Igarashi I, Kaneko O, et al. Transfection of Babesia bovis by double selection with WR99210 and Blasticidin-S and its application for functional analysis of thioredoxin peroxidase-1. PLoS One. 2015; 10: e0125993.
549
Hakimi H, Ishizaki T, Kegawa Y, Kaneko O, Kawazu SI, Asada M. Genome editing of Babesia bovis using the CRISPR/Cas9 system. mSphere. 2019; 4: e00109-19.
550
Asada M, Hakimi H, Kawazu SI. The application of the HyPer fluorescent sensor in the real-time detection of H 2 O 2 in Babesia bovis merozoites in vitro. Vet Parasitol. 2018; 255: 78-82.
551
Talman AM, Blagborough AM, Sinden RE. A Plasmodium falciparum strain expressing GFP throughout the parasite’s life-cycle. PLoS One. 2010; 5: e9156.
552
Mazuz ML, Laughery JM, Lebovitz B, Yasur-Landau D, Rot A, Bastos RG, et al. Experimental Infection of Calves with Transfected Attenuated Babesia bovis Expressing the Rhipicephalus microplus Bm86 Antigen and eGFP Marker: Preliminary Studies towards a Dual Anti-Tick/ Babesia Vaccine. Pathogens. 2021; 10: 135.
553
Oldiges DP, Laughery JM, Tagliari NJ, Leite Filho RV, Davis WC, da Silva Vaz I Jr, et al. Transfected Babesia bovis expressing a tick GST as a live vector vaccine. PLoS Negl Trop Dis. 2016; 10: e0005152.
554
Bishop R, Musoke A, Morzaria S, Gardner M, Nene V. Theileria : intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology. 2004; 129(Suppl): S271-83.
555
World Organisation for Animal Health (WOAH). Theileriosis [Internet]. Available from: https://www.woah.org/en/disease/theileriosis/
556
Ozubek S, Aktas M. Molecular and parasitological survey of ovine piroplasmosis, including the first report of Theileria annulata (apicomplexa: theileridae) in sheep and goats from Turkey. J Med Entomol. 2017; 54: 212-20.
557
Jackson LA, Waldron SJ, Weier HM, Nicoll CL, Cooke BM. Babesia bovis : culture of laboratory-adapted parasite lines and clinical isolates in a chemically defined medium. Exp Parasitol. 2001; 99: 168-74.
558
Rodríguez-Vivas RI, Grisi L, Pérez de León AA, Villela HS, Torres-Acosta JF de J, Fragoso Sánchez H, et al. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev Mex De Cienc Pecuarias. 2017; 8: 61-74.
559
Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004; 129(Suppl): S247-69.
560
Forouharmehr A, Nazifi N, Mousavi SM, Jaydari A. Designing an efficient epitope-based vaccine conjugated with a molecular adjuvant against Bovine Babesiosis: a computational study. Process Biochemistry. 2022; 121: 170-7.
561
Santos JHM, Siddle HV, Raza A, Stanisic DI, Good MF, Tabor AE. Exploring the landscape of Babesia bovis vaccines: progress, challenges, and opportunities. Parasit Vectors. 2023; 16: 274.
562
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014; 141: 1563-92.
563
Jaramillo Ortiz JM, Paoletta MS, Gravisaco MJ, López Arias LS, Montenegro VN, de la Fournière SAM, et al. Immunisation of cattle against Babesia bovis combining a multi-epitope modified vaccinia Ankara virus and a recombinant protein induce strong Th1 cell responses but fails to trigger neutralising antibodies required for protection. Ticks Tick Borne Dis. 2019; 10: 101270.
564
Bastos RG, Capelli-Peixoto J, Laughery JM, Suarez CE, Ueti MW. Vaccination with an in vitro culture attenuated Babesia bovis strain safely protects highly susceptible adult cattle against acute bovine babesiosis. Front Immunol. 2023; 14: 1219913.
565
Earls KN, Poh K, Ueti M, Oyen K. Infection with Babesia bovis alters metabolic rates of Rhipicephalus microplus ticks across life stages. Parasit Vectors. 2025; 18: 81.
566
Shkap V, Rasulov I, Abdurasulov S, Fish L, Leibovitz B, Krigel Y, et al. Babesia bigemina : attenuation of an Uzbek isolate for immunization of cattle with live calf- or culture-derived parasites. Vet Parasitol. 2007; 146: 221-6.
567
Lawrence JA, Malika J, Whiteland AP, Kafuwa P. Efficacy of an Australian Babesia bovis vaccine strain in Malawi. Vet Rec. 1993; 132: 295-6.
568
Callow LL, Dalgliesh RJ, de Vos AJ. Development of effective living vaccines against bovine babesiosis--the longest field trial? Int J Parasitol. 1997; 27: 747-67.
569
De Vos AJ, Bock RE. Vaccination against bovine babesiosis. Ann N Y Acad Sci. 2000; 916: 540-5.
570
Combavac 3 in 1: live tick fever vaccine. Wacol, Qld.: Tick Fever Centre; 2007. 14 p.
571
Pipano E. Vaccines against hemoparasitic diseases in Israel with special reference to quality assurance. Trop Anim Health Prod. 1997; 29: 86S-90S.
572
Shkap V, Leibovitz B, Krigel Y, Hammerschlag J, Marcovics A, Fish L, et al. Vaccination of older Bos taurus bulls against bovine babesiosis. Vet Parasitol. 2005; 129: 235-42.
573
Molad T, Fleiderovitz L, Leibovitz B, Wolkomirsky R, Behar A, Markovics A. Differentiation between Israeli B. bovis vaccine strain and field isolates. Vet Parasitol. 2015; 208: 159-68.
574
Troskie PC, Latif AA, Mans BJ, Combrink MP. Efficacy of South African Babesia bovis vaccine against field isolates. Ticks Tick Borne Dis. 2017; 8: 671-4.
575
Alarcón GJC, Martínez JAÁ, Ramírez EER, Aragón JAR, Gualito JJM, Murguía CA, et al. Protection against bovine babesiosis with a mixed in vitro culture-derived Babesia bovis and Babesia bigemina vaccine under field challenge. Immunization in a disease-free area. Vet Mex. 2003; 34: 323-32.
576
Rojas-Martínez C, Rodríguez-Vivas RI, Millán JVF, Bautista-Garfias CR, Castañeda-Arriola RO, Lira-Amaya JJ, et al. Bovine babesiosis: cattle protected in the field with a frozen vaccine containing Babesia bovis and Babesia bigemina cultured in vitro with a serum-free medium. Parasitol Int. 2018; 67: 190-5.
577
Ord RL, Lobo CA. Human Babesiosis: pathogens, prevalence, diagnosis and treatment. Curr Clin Microbiol Rep. 2015; 2: 173-81.
578
Kumar A, O’Bryan J, Krause PJ. The Global Emergence of Human Babesiosis. Pathogens. 2021; 10: 1447.
579
Silva-Ramos CR, Faccini-Martínez ÁA. Call for Caution to Consider Babesia bovis and Babesia bigemina as Anthropozoonotic Agents in Colombia. Comment on Kumar et al. The Global Emergence of Human Babesiosis. Pathogens 2021, 10, 1447. Pathogens. 2022; 11: 263.
580
Vannier E, Gewurz BE, Krause PJ. Human babesiosis. Infect Dis Clin North Am. 2008; 22: 469-88.
581
Krause PJ. Human babesiosis. Int J Parasitol. 2019; 49: 165-74.
582
Düzlü Ö, İnci A, Yıldırım A. Karadeniz Bölgesi’ndeki sığırlardan elde edilen Babesia bovis suşlarının moleküler karakterizasyonu. JHS. 2011; 20: 18-29.
583
Aydın MF, Dumanlı N. Tick-borne Pathogens in Small Ruminants in Turkey: A Systematic Review. Turk Vet J. 2019; 1: 74-83.
584
Poyraz Ö, Güneş T. Sinop yöresinde kırsal kesimde yaşayan insanlarda Babesia microti seroprevalansı. Turkiye Parazitol Derg. 2010; 34: 81-5.
585
Tirivanhu N, Ruzhani F, Jambo N. Determinants of effective cattle disease management among smallholder farmers in light of rapid theileriosis outbreaks and economic losses: the case of Mutare rural district, Manicaland province, Zimbabwe. Cogent Food Agric. 2023; 9.
586
Ochanda H, Young AS, Medley GF, Perry BD. Vector competence of 7 rhipicephalid tick stocks in transmitting 2 Theileria parva parasite stocks from Kenya and Zimbabwe. Parasitology. 1998; 116: 539-45.
587
Konnai S, Imamura S, Nakajima C, Witola WH, Yamada S, Simuunza M, Nambota A, Yasuda J, Ohashi K, Onuma M. Acquisition and transmission of Theileria parva by vector tick, Rhipicephalus appendiculatus. Acta Trop. 2006; 99: 34-41.
588
Sayın F, Nalbantoğlu S, Karaer K, Çakmak A, Dinçer Ş, Vatansever Z, et al. Studies on tropical theileriosis in Turkey 5. Studies on various numbers of attenuated vaccine cells used in cattle against tropical theileriosis. Turk J Vet Anim Sci. 2004; 28: 963-71.
589
Dollvet Biyoteknoloji A.Ş. Tayledoll: canlı attenüe Theileria annulata aşısı, prospektüs [Internet]. Şanlıurfa: Dollvet Biyoteknoloji A.Ş.; 2025 [cited 2025 May 8]. Available from: https://dollvet.com.tr/wp-content/uploads/2024/05/tayledoll-tr-prospektus-web.pdf
590
Selim A, Weir W, Khater H. Prevalence and risk factors associated with tropical theileriosis in Egyptian dairy cattle. Vet World. 2022; 15: 919-24.
591
Rasulov I, Fish L, Shkap V. Vaccination of cattle against tropical theileriosis in Uzbekistan using autochthonous live vaccine. Vaccine. 2008; 26(Suppl 6): G14-6.
592
Darghouth MA. Review on the experience with live attenuated vaccines against tropical theileriosis in Tunisia: considerations for the present and implications for the future. Vaccine. 2008; 26(Suppl 6): G4-10.
593
Sayın F. Status of tropical theileriosis in Turkey. In Proceedings of the Second International Workshop Sponsored by the European Communities Science and Technology for Devolopment Programme. March 18-22, India. 1991; p.: 20-22.
594
Sayın F, Dinçer Ş, Karaer Z, Çakmak A, İnci A, Yukarı BA, et al. Epidemiological study on tropical theileriosis around Ankara. In: Proceedings of the Second International Workshop Sponsored by the European Communities Science and Technology for Development Programme; 1991; India. p. 51-4.
595
Yaralı C. Post-vaccination seroprevalence studies on the cattle vaccinated against tropical theileriosis in polatlı region. Etlik Vet Mikrobiyol Derg. 2022; 33: 40-52.
596
Al-Hosary A, Radwan AM, Ahmed LS, Abdelghaffar SK, Fischer S, Nijhof AM, et al. Isolation and propagation of an Egyptian Theileria annulata infected cell line and evaluation of its use as a vaccine to protect cattle against field challenge. Sci Rep. 2024; 14: 8565.
597
Peters AR, Toye P, Spooner P, Giulio GD, Lynen G. Registration of the east coast fever infection and treatment method vaccine (Muguga cocktail) in East Africa. Gates Open Res. 2020; 4: 100.
598
de la Fuente J, Sobrino I, Villar M. Design and evaluation of vaccines for the control of the etiological agent of East Coast fever. Parasit Vectors. 2024; 17: 479.
599
Kizilarslan F, Yildirim A, Duzlu O, Inci A, Onder Z, Ciloglu A. Molecular detection and characterization of Theileria equi and Babesia caballi in horses ( Equus ferus caballus ) in Turkey. JEVS. 2015; 35: 830-5.
600
Kjemtrup AM, Robinson T, Conrad PA. Description and epidemiology of Theileria youngi n. sp. from a northern Californian dusky-footed woodrat ( Neotoma fuscipes ) population. J Parasitol. 2001; 87: 373-8.
601
Camacho AT, Pallas E, Gestal JJ, Guitián FJ, Olmeda AS, Goethert HK, et al. Infection of dogs in north-west Spain with a Babesia microti -like agent. Vet Rec. 2001; 149: 552-5.
602
Uilenberg G, Perié NM, Spanjer AA, Franssen FF. Theileria orientalis , a cosmopolitan blood parasite of cattle: demonstration of the schizont stage. Res Vet Sci. 1985; 38: 352-60.
603
Stockham SL, Kjemtrup AM, Conrad PA, Schmidt DA, Scott MA, Robinson TW, et al. Theileriosis in a Missouri beef herd caused by Theileria buffeli : case report, herd investigation, ultrastructure, phylogenetic analysis, and experimental transmission. Vet Pathol. 2000; 37: 11-21.
604
Oakes VJ, Yabsley MJ, Schwartz D, LeRoith T, Bissett C, Broaddus C, et al. Theileria orientalis Ikeda Genotype in Cattle, Virginia, USA. Emerg Infect Dis. 2019; 25: 1653-9.
605
Robinson RM, Kuttler KL, Thomas JW, Marburger RG. Theileriasis in Texas White-Tailed Deer. J Wildl Manag. 1967; 31: 455-9.
606
Chae JS, Waghela SD, Craig TM, Kocan AA, Wagner GG, Holman PJ. Two Theileria cervi SSU RRNA gene sequence types found in isolates from white-tailed deer and elk in North America. J Wildl Dis. 1999; 35: 458-65.
607
Yabsley MJ, Quick TC, Little SE. Theileriosis in a white-tailed deer ( Odocoileus virginianus ) fawn. J Wildl Dis. 2005; 41: 806-9.
608
Wood J, Johnson EM, Allen KE, Campbell GA, Rezabek G, Bradway DS, et al. Merogonic stages of Theileria cervi in mule deer ( Odocoileus hemionus ). J Vet Diagn Invest. 2013; 25: 662-5.
609
Waldrup KA, Collisson E, Bentsen SE, Winkler CK, Wagner GG. Prevalence of erythrocytic protozoa and serologic reactivity to selected pathogens in deer in Texas. Preventive Veterinary Medicine. 1989; 7: 49-58.
610
Cauvin A, Hood K, Shuman R, Orange J, Blackburn JK, Sayler KA, et al. The impact of vector control on the prevalence of Theileria cervi in farmed Florida white-tailed deer, Odocoileus virginianus. Parasit Vectors. 2019; 12: 100.
611
Pavón-Rocha AJ, Cárdenas-Flores A, Rábago-Castro JL, Barrón-Vargas CA, Mosqueda J. First molecular evidence of Theileria cervi infection in white-tailed deer ( Odocoileus virginianus ) in Mexico. Vet Parasitol Reg Stud Reports. 2020; 22: 100482.
612
Sevinc F, Sevinc M, Ekici OD, Yildiz R, Isik N, Aydogdu U. Babesia ovis infections: detailed clinical and laboratory observations in the pre- and post-treatment periods of 97 field cases. Vet Parasitol. 2013; 191: 35-43.
613
Liu AH, Yin H, Guan GQ, Schnittger L, Liu ZJ, Ma ML, et al. At least two genetically distinct large Babesia species infective to sheep and goats in China. Vet Parasitol. 2007; 147: 246-51.
614
Niu Q, Liu Z, Yang J, Yu P, Pan Y, Zhai B, et al. Genetic diversity and molecular characterization of Babesia motasi -like in small ruminants and ixodid ticks from China. Infect Genet Evol. 2016; 41: 8-15.
615
Guan G, Ma M, Moreau E, Liu J, Lu B, Bai Q, et al. A new ovine Babesia species transmitted by Hyalomma anatolicum anatolicum. Exp Parasitol. 2009; 122: 261-7.
616
Guan G, Korhonen PK, Young ND, Koehler AV, Wang T, Li Y, et al. Genomic resources for a unique, low-virulence Babesia taxon from China. Parasit Vectors. 2016; 9: 564.
617
Couto J, Villar M, Mateos-Hernández L, Ferrolho J, Sanches GS, Sofia Santos A, et al. Quantitative proteomics identifies metabolic pathways affected by Babesia infection and blood feeding in the sialoproteome of the vector Rhipicephalus bursa. Vaccines. 2020; 8: 91.
618
Yeruham I, Hadani A, Galker F. Some epizootiological and clinical aspects of ovine babesiosis caused by Babesia ovis -a review. Vet Parasitol. 1998; 74: 153-63.
619
Firat R, Ulucesme MC, Aktas M, Ceylan O, Sevinc F, Bastos RG, et al. Role of Rhipicephalus bursa larvae in transstadial transmission and endemicity of Babesia ovis in chronically infected sheep. Front Cell Infect Microbiol. 2024; 14: 1428719.
620
Ozubek S, Ulucesme MC, Ceylan O, Sevinc F, Aktas M. The impact of Babesia ovis -infected Rhipicephalus bursa larvae on the severity of babesiosis in sheep. Front Cell Infect Microbiol. 2025; 15: 1544775.
621
Sayın F, Nalbantoğlu S, Yukarı BA, Çakmak A, Karaer Z. Epidemiological studies on sheep and goat Theileria infection. Ankara Üniv Vet Fak Derg. 2009; 56: 127‑9.
622
İnci A. Detection of Babesia caballi (Nuttall, 1901) and Babesia equi (Laveran, 1901) in horses by microscopic examination in military farm in Gemlik. Turk J Vet Anim Sci. 1997; 21: 43-6.
623
Guven E, Avcioglu H, Deniz A, Balkaya İ, Abay U, Yavuz Ş, et al. Prevalence and molecular characterization of Theileria equi and Babesia caballi in jereed horses in Erzurum, Turkey. Acta Parasitol. 2017; 62: 207-13.
624
Çırak VY, Girişgin AO. Türkiye’de at, eşek ve katırlarda saptanan parazitler. Turkiye Parazitol Derg. 2021; 45: 56-75.
625
Ozubek S, Aktas M. Genetic diversity and prevalence of piroplasm species in equids from Turkey. Comp Immunol Microbiol Infect Dis. 2018; 59: 47-51.
626
Ceylan O, Benedicto B, Ceylan C, Tumwebaze M, Galon EM, Liu M, et al. A survey on equine tick-borne diseases: the molecular detection of Babesia ovis DNA in Turkish racehorses. Ticks Tick Borne Dis. 2021; 12: 101784.
627
Baneth G, Nachum-Biala Y, Birkenheuer AJ, Schreeg ME, Prince H, Florin-Christensen M, et al. A new piroplasmid species infecting dogs: morphological and molecular characterization and pathogeny of Babesia negevi n. sp. Parasit Vectors. 2020; 13: 130.
628
Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia life cycle - when phylogeny meets biology. Trends Parasitol. 2019; 35: 356-68.
629
Solano-Gallego L, Sainz Á, Roura X, Estrada-Peña A, Miró G. A review of canine babesiosis: the European perspective. Parasit Vectors. 2016; 9: 336.
630
Bilgic HB, Pekel GK, Hosgor M, Karagenc T. A Retrospective epidemiological study: the prevalence of Ehrlichia canis and Babesia vogeli in dogs in the Aegean Region of Turkey. Acta Vet. 2019; 69: 164-76.
631
Gökçe E, Kirmizigül A, Tasci G, Uzlu E, Ölmez N, Vatansever Z. Türkiye’de köpeklerde Babesia canis ’in klinik ve parazitolojik olarak ilk tespiti. Kafkas Univ Vet Fak Derg. 2013.
632
Gülanber A, Gorenflot A, Schetters TPM, Carcy B. First molecular diagnosis of Babesia vogeli in domestic dogs from Turkey. Vet Parasitol. 2006; 139: 224-30.
633
Orkun Ö, Karaer Z. Molecular characterization of Babesia species in wild animals and their ticks in Turkey. Infect Genet Evol. 2017; 55: 8-13.
634
Ulucesme MC, Karoglu A, Barutcuoglu B, Aktas M, Ozubek S. First molecular identification of Babesia ovis in dogs: an unexpected host. Pak Vet J. 2025; 45: 409-14.
635
Wikander YM, Reif KE. Cytauxzoon felis : an overview. Pathogens. 2023; 12: 133.
636
Schnittger L, Ganzinelli S, Bhoora R, Omondi D, Nijhof AM, Florin-Christensen M. The Piroplasmida Babesia , Cytauxzoon , and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res. 2022; 121: 1207-45.
637
Karaca M, Akkan HA, Tütüncü M, Özdal N, Değer S, Agaoglu ZT. Van kedilerinde Cytauxzoonosis. YYU Vet Fak Derg. 2007; 18: 37-9.
638
Önder Z, Pekmezci D, Yıldırım A, Pekmezci GZ, Düzlü Ö, Kot ZN, et al. Microscopy and molecular survey of Hepatozoon spp. in domestic cats and their ticks: first report of H. silvestris from Türkiye. Parasitol Int. 2025; 104: 102979.
639
Ceylan O, Úngari LP, Sönmez G, Gul C, Ceylan C, Tosunoglu M, et al. Discovery of a new Hepatozoon species namely Hepatozoon viperoi sp. nov. in nose-horned vipers in Türkiye. Sci Rep. 2023; 13: 9677.
640
Bruley M, Duron O. Multi-locus sequence analysis unveils a novel genus of filarial nematodes associated with ticks in French Guiana. Parasite. 2024; 31: 14.
641
Koçkaya ES, Güvendi M, Köseoğlu AE, Karakavuk M, Değirmenci Döşkaya A, Erkunt Alak S, et al. Molecular prevalence and genetic diversity of Hepatozoon spp. in stray cats of İzmir, Türkiye. Comp Immunol Microbiol Infect Dis. 2023; 101: 102060.
642
Allsopp BA. Heartwater -Ehrlichia ruminantium infection. Rev Sci Tech. 2015; 34: 557-68.
643
Petit G, Bain O, Cassone J, Seureau C. La filaire Cercopithifilaria roussilhoni chez la tique vectrice. Ann Parasitol Hum Comp. 1988; 63: 296-302.
644
Londoño I. Distribution and movement of infective-stage larvae of Dipetalonema viteae (Filarioidea) in the vector tick, Ornithodoros tartakowskyi (Argasidae). J Parasitol. 1976; 62: 589-95.
645
Londoño I. Behavior of Dipetalonema viteae (Filarioidea) during escape from the vector tick, Ornithodoros tartakowskyi (Argasidae). J Parasitol. 1976; 62: 596-603.
646
Londoño I. Transmission of microfilariae and infective larvae of Dipetalonema viteae (Filarioidea) among vector ticks, Ornithodoros tartakowskyi (Argasidae), and loss of microfilariae in coxal fluid. J Parasitol. 1976; 62: 786-8.
647
Lucius R, Textor G. Acanthocheilonema viteae : rational design of the life cycle to increase production of parasite material using less experimental animals. Appl Parasitol. 1995; 36: 22-33.
648
Olmeda-García AS, Rodríguez-Rodríguez JA. Stage-specific development of a filarial nematode ( Dipetalonema dracunculoides ) in vector ticks. J Helminthol. 1994; 68: 231-5.
649
Zhang L, Zhang Y, Adusumilli S, Liu L, Narasimhan S, Dai J, et al. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 2011; 7: e1002079.
650
Otranto D, Brianti E, Latrofa MS, Annoscia G, Weigl S, Lia RP, et al. On a Cercopithifilaria sp. transmitted by Rhipicephalus sanguineus : a neglected, but widespread filarioid of dogs. Parasit Vectors. 2012; 5: 1.
651
Namrata P, Miller JM, Shilpa M, Reddy PR, Bandoski C, Rossi MJ, et al. Filarial nematode infection in Ixodes scapularis ticks collected from southern connecticut. Vet Sci. 2014; 1: 5-15.
652
Latrofa MS, Dantas-Torres F, Giannelli A, Otranto D. Molecular detection of tick-borne pathogens in Rhipicephalus sanguineus group ticks. Ticks Tick Borne Dis. 2014; 5: 943-6.
653
Henning TC, Orr JM, Smith JD, Arias JR, Rasgon JL, Norris DE. Discovery of filarial nematode DNA in Amblyomma americanum in Northern Virginia. Ticks Tick Borne Dis. 2016; 7: 315-8.
654
Bezerra-Santos MA, de Macedo LO, Nguyen VL, Manoj RR, Laidoudi Y, Latrofa MS, et al. Cercopithifilaria spp. in ticks of companion animals from Asia: new putative hosts and vectors. Ticks Tick Borne Dis. 2022; 13: 101957.
655
Binetruy F, Duron O. Molecular detection of Cercopithifilaria, Cruorifilaria and Dipetalonema -like filarial nematodes in ticks of French Guiana. Parasite. 2023; 30: 24.
656
Santos MAB, de Souza IB, de Macedo LO, do Nascimento Ramos CA, de Oliveira Rego AG, Alves LC, et al. Cercopithifilaria bainae in Rhipicephalus sanguineus sensu lato ticks from dogs in Brazil. Ticks Tick Borne Dis. 2017; 8: 623-5.
657
Ajileye OD, Verocai GG, Light JE. A review of filarial nematodes parasitizing tick vectors: unraveling global patterns in species diversity, host associations, and interactions with tick-borne pathogens. Parasit Vectors. 2025; 18: 50.
658
Abbott SP, Sigler L, Currah RS. Microascus brevicaulis sp. nov., the Teleomorph of Scopulariopsis brevicaulis , supports placement of Scopulariopsis with the Microascaceae. Mycologia. 1998; 90: 297-302.
659
Index Fungorum Partnership. Index Fungorum. Scopulariopsis brevicaulis (Sacc.) Bainier, 1907. Accessed through: World Register of Marine Species. 2025 Mar 14. Available from: https://www.marinespecies.org/aphia.php?p=taxdetails&id=100547
660
Phillips P, Wood WS, Phillips G, Rinaldi MG. Invasive hyalohyphomycosis caused by Scopulariopsis brevicaulis in a patient undergoing allogeneic bone marrow transplant. Diagn Microbiol Infect Dis. 1989; 12: 429-32.
661
Richardson M, Lass-Flörl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect. 2008; 14 Suppl 4: 5-24.
662
Abdel-Gawad KM. Keratinophilic and saprobic fungi on the hair of goats, ewes and bovine udder in Egypt. In: Proceedings of the 8th Science Conference; 1998; Egypt.
663
Welsh RD, Ely RW. Scopulariopsis chartarum systemic mycosis in a dog. J Clin Microbiol. 1999; 37: 2102-3.
664
Ogawa S, Shibahara T, Sano A, Kadota K, Kubo M. Generalized hyperkeratosis caused by Scopulariopsis brevicaulis in a Japanese Black calf. J Comp Pathol. 2008; 138: 145-50.
665
Yapıcıer ÖŞ, Kaya M, Erol Z, Öztürk D. Isolation of Scopulariopsis brevicaulis from Wistar Rats. Etlik Vet Mik Derg. 2020; 31: 196-200.
666
Krisher KK, Holdridge NB, Mustafa MM, Rinaldi MG, McGough DA. Disseminated Microascus cirrosus infection in pediatric bone marrow transplant recipient. J Clin Microbiol. 1995; 33: 735-7.
667
Neglia JP, Hurd DD, Ferrieri P, Snover DC. Invasive Scopulariopsis in the immunocompromised host. Am J Med. 1987; 83: 1163-6.
668
Lee MH, Hwang SM, Suh MK, Ha GY, Kim H, Park JY. Onychomycosis caused by Scopulariopsis brevicaulis : report of two cases. Ann Dermatol. 2012; 24: 209-13.
669
Petanović M, Tomić Paradzik M, Kristof Z, Cvitković A, Topolovac Z. Scopulariopsis brevicaulis as the cause of dermatomycosis. Acta Dermatovenerol Croat. 2010; 18: 8-13.
670
Kozak M, Bilek J, Beladicova V, Beladicova K, Baranova Z, Bugarsky A. Study of the dermatophytes in dogs and the risk of human infection. Bratisl Lek Listy. 2003; 104: 211-7.
671
Cox NH, Irving B. Cutaneous ‘ringworm’ lesions of Scopulariopsis brevicaulis. Br J Dermatol. 1993; 129: 726-8.
672
Creus L, Umbert P, Torres-Rodríguez JM, López-Gil F. Ulcerous granulomatous cheilitis with lymphatic invasion caused by Scopulariopsis brevicaulis infection. J Am Acad Dermatol. 1994; 31: 881-3.
673
Ginarte M, Pereiro M Jr, Fernández-Redondo V, Toribio J. Plantar infection by Scopulariopsis brevicaulis. Dermatology. 1996; 193: 149-51.
674
Wu CY, Lee CH, Lin HL, Wu CS. Cutaneous granulomatous infection caused by Scopulariopsis brevicaulis. Acta Derm Venereol. 2009; 89: 103-4.
675
Bruynzeel I, Starink TM. Granulomatous skin infection caused by Scopulariopsis brevicaulis. J Am Acad Dermatol. 1998; 39: 365-7.
676
Tosti A, Piraccini BM, Stinchi C, Lorenzi S. Onychomycosis due to Scopulariopsis brevicaulis : clinical features and response to systemic antifungals. Br J Dermatol. 1996; 135: 799-802.
677
Gluck O, Segal N, Yariv F, Polacheck I, Puterman M, Greenberg D, et al. Pediatric invasive sinonasal Scopulariopsis brevicaulis --a case report and literature review. Int J Pediatr Otorhinolaryngol. 2011; 75: 891-3.
678
Tikveşli M, Garip R, Solak M, Kaya Ö, Güdücüoğlu H. Scopulariopsis brevicaulis ’in neden olduğu fungal keratit olgusu. Turk Mikrobiyol Cemiy Derg. 2024; 54: 68-71.
679
Iwen PC, Schutte SD, Florescu DF, Noel-Hurst RK, Sigler L. Invasive Scopulariopsis brevicaulis infection in an immunocompromised patient and review of prior cases caused by Scopulariopsis and Microascus species. Med Mycol. 2012; 50: 561-9.
680
Salmon A, Debourgogne A, Vasbien M, Clément L, Collomb J, Plénat F, et al. Disseminated Scopulariopsis brevicaulis infection in an allogeneic stem cell recipient: case report and review of the literature. Clin Microbiol Infect. 2010; 16: 508-12.
681
Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008; 358: 1109-17.
682
Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Buitrago MJ, Monzón A, Rodriguez-Tudela JL. Scopulariopsis brevicaulis , a fungal pathogen resistant to broad-spectrum antifungal agents. Antimicrob Agents Chemother. 2003; 47: 2339-41.
683
Steinbach WJ, Schell WA, Miller JL, Perfect JR, Martin PL. Fatal Scopulariopsis brevicaulis infection in a paediatric stem-cell transplant patient treated with voriconazole and caspofungin and a review of Scopulariopsis infections in immunocompromised patients. J Infect. 2004; 48: 112-6
684
Upton A, Marr KA. Emergence of opportunistic mould infections in the hematopoietic stem cell transplant patient. Curr Infect Dis Rep. 2006; 8: 434-41.
685
Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010; 50: 1091-100.
686
Sellier P, Monsuez JJ, Lacroix C, Feray C, Evans J, Minozzi C, et al. Recurrent subcutaneous infection due to Scopulariopsis brevicaulis in a liver transplant recipient. Clin Infect Dis. 2000; 30: 820-3.
687
Dhar J, Carey PB. Scopulariopsis brevicaulis skin lesions in an AIDS patient. AIDS. 1993; 7: 1283-4.
688
Richardson MD. Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother. 2005; 56: i5-11.
689
Aguilar C, Pujol I, Guarro J. In vitro antifungal susceptibilities of Scopulariopsis isolates. Antimicrob Agents Chemother. 1999; 43: 1520-2.
690
Schinabeck MK, Ghannoum MA. Human hyalohyphomycoses: a review of human infections due to Acremonium spp., Paecilomyces spp., Penicillium spp., and Scopulariopsis spp. J Chemother. 2003; 15(Suppl 2): 5-15.
691
Xhaard A, Lanternier F, Porcher R, Dannaoui E, Bergeron A, Clement L, et al. Mucormycosis after allogeneic haematopoietic stem cell transplantation: a French Multicentre Cohort Study (2003-2008). Clin Microbiol Infect. 2012; 18 :E396-400.
692
Baddley JW, Stroud TP, Salzman D, Pappas PG. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin Infect Dis. 2001; 32: 1319-24.
693
Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002; 34: 909-17.
694
Yoder JA, Hanson PE, Zettler LW, Benoit JB, Ghisays F, Piskin KA. Internal and external mycoflora of the American dog tick, Dermacentor variabilis (Acari: Ixodidae), and its ecological implications. Appl Environ Microbiol. 2003; 69: 4994-6.
695
Yoder JA, Benoit JB, Rellinger EJ, Telford SR 3rd. Failure of ticks to transmit Scopulariopsis brevicaulis (Deuteromycota), a common filamentous fungal commensal of ticks. J Med Entomol. 2005; 42: 383-7.
696
Samsináková A, Kálalová S, Daniel M, Dusbábek F, Honzáková E, Cerný V. Entomogenous fungi associated with the tick Ixodes ricinus (L.). Folia Parasitol. 1974; 21: 39-48.
697
Samish M, Rehacek J. Pathogens and predators of ticks and their potential in biological control. Annu Rev Entomol. 1999; 44: 159-82.
698
Kaay GP, Hassan S. Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol. 2000; 24: 913-26.
699
St Leger RJ, Joshi L, Roberts D. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol. 1998; 64: 709-13.
700
Yoder JA, Ark JT, Benoit JB, Rellinger EJ, Tank JL. Inability of the lone star tick, Amblyomma Americanum (L.), to resist desiccation and maintain water balance following application of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae (Deuteromycota). Int J Acarol. 2006; 32: 211-8.
701
İnci A, Kılıç E, Canhilal R. Entomopathogens in control of urban pests. Ankara Univ Vet Fak Derg. 2014; 61: 155-60.
702
Gomathinayagam S, Cradock, Kenwyn R, Needham GR. Pathogenicity of the fungus Beauveria bassiana (Balsamo) to Amblyomma americanum (L.) and Dermacentor variabilis (Say) ticks (Acari: Ixodidae). Int J Acarol. 2002; 28: 395-7.
703
Kirkland BH, Westwood GS, Keyhani NO. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis , Rhipicephalus sanguineus , and Ixodes scapularis. J Med Entomol. 2004; 41: 705-11.
704
Benoit JB, and Yoder JA. Maternal transmission of a fungus to eggs in the American dog tick, Dermacentor variabilis (Say). Int J Acarol. 2004; 30: 77-80.
705
Yoder JA, Benoit JB, Rellinger EJ, Telford SR. Failure of ticks to transmit Scopulariopsis brevicaulis (Deuteromycota), a common filamentous fungal commensal of ticks. J Med Entomol. 2005; 42: 383-7.
706
Yoder JA, Benoit JB, Denlinger DL, Tank JL, Zettler LW. An endosymbiotic conidial fungus, Scopulariopsis brevicaulis , protects the American dog tick, Dermacentor variabilis , from desiccation imposed by an entomopathogenic fungus. J Invertebr Pathol. 2008; 97: 119-27.
707
Elham AS, Shigidi MT, Hussan SM. Activity of Scopulariopsis brevicaulis on Hyalomma anatolicum and Amblyomma lepidum (Acari : Ixodidae). J Med Sci. 2013; 13: 667-75.
708
Ozturk D, Adanır R, Turgutoglu H. Superficial skin infection with Scopulariopsis brevicaulis in two goats. A case report. Bull Vet Inst Pulawy. 2009; 53: 361-3.
709
Miller MW, Williams ES. Chronic wasting disease of cervids. Curr Top Microbiol Immunol. 2004; 284: 193-214.
710
Inzalaco HN, Bravo-Risi F, Morales R, Walsh DP, Storm DJ, Pedersen JA, et al. Ticks harbor and excrete chronic wasting disease prions. Sci Rep. 2023; 13: 7838.
711
Soto P, Ho N, Lockwood M, Stolte A, Reed JH, Morales R. Chronic wasting disease (CWD) prion detection in environmental and biological samples from a taxidermy site and nursing facility, and instruments used in surveillance activities. Sci Total Environ. 2025; 976: 179318.
712
Houston F, Andréoletti O. The zoonotic potential of animal prion diseases. Handb Clin Neurol. 2018; 153: 447-62.
713
Kirvar E, Ilhan T, Katzer F, Wilkie G, Hooshmand-Rad P, Brown D. Detection of Theileria lestoquardi (hirci) in ticks, sheep, and goats using the polymerase chain reaction. Ann N Y Acad Sci. 1998; 849: 52-62.
714
Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin North Am. 2008; 22: 195-215.
715
Kaufman WR. Tick-host interaction: a synthesis of current concepts. Parasitol Today. 1989; 5: 47-56.
716
Binnington KC. Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. Int J Parasitol. 1978; 8: 97-115.
717
Anderson JM, Valenzuela JG. Tick saliva: from pharmacology and biochemistry to transcriptome analysis and functional genomics. In: Bowman AS, Nuttall PA, editors. Ticks: Biology, Disease and Control. Cambridge University Press. 2008; p. 92-107.
718
Harrus S, Perlman-Avrahami A, Mumcuoglu KY, Morick D, Eyal O, Baneth G. Molecular detection of Ehrlichia canis , Anaplasma bovis , Anaplasma platys , Candidatus Midichloria mitochondrii and Babesia canis vogeli in ticks from Israel. Clin Microbiol Infect. 2011; 17: 459-63.
719
Spörndly-Nees E, Grandi G, Thorsson E, Gustafsson TN, Omazic A. An emerging role for ticks as vectors of tularaemia in Sweden. Vet Med Sci. 2025; 11: e70094.
720
He L, Liu Q, Yao B, Zhou Y, Hu M, Fang R, et al. A historical overview of research on Babesia orientalis , a protozoan parasite infecting water buffalo. Front Microbiol. 2017; 8: 1323.
721
Ogden NH, Mechai S, Margos G. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity. Front Cell Infect Microbiol. 2013; 3: 46.
722
Couret J, Schofield S, Narasimhan S. The environment, the tick, and the pathogen - it is an ensemble. Front Cell Infect Microbiol. 2022; 12: 1049646.
723
Jaenson TGT, Gray JS, Lindgren PE, Wilhelmsson P. Coinfection of Babesia and Borrelia in the tick Ixodes ricinus -A Neglected Public Health Issue in Europe? Pathogens. 2024; 13: 81.
724
Dantas-Torres F. Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. Int J Parasitol Parasites Wildl. 2015; 4: 452-61.
725
Diuk-Wasser MA, VanAcker MC, Fernandez MP. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J Med Entomol. 2021; 58: 1546-64.
726
Rodino KG, Pritt BS. Novel applications of metagenomics for detection of tickborne pathogens. Clin Chem. 2021; 68: 69-74.
727
Mantlo EK, Haley NJ. Heartland virus: an evolving story of an emerging zoonotic and vector-borne disease. Zoonotic Diseases. 2023; 3: 188-202.
728
Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, et al. Powassan virus neuropathology and genomic diversity in patients with fatal encephalitis. Open Forum Infect Dis. 2020; 7: ofaa392.
729
Schmidt KA, Ostfeld RS. Biodiversity and the dilution effect in disease ecology. Ecology. 2001; 82: 609-19.
730
Bouchard C, Beauchamp G, Leighton PA, Lindsay R, Bélanger D, Ogden NH. Does high biodiversity reduce the risk of Lyme disease invasion? Parasit Vectors. 2013; 6: 195.
731
Li S, Vanwambeke SO, Licoppe AM, Speybroeck N. Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus : a scenario analysis. Ecol Modell. 2014; 276: 1-13.
732
Cobbold CA, Teng J, Muldowney JS. The influence of host competition and predation on tick densities and management implications. Theor Ecol. 2015; 8: 349-68.
733
Alale TY, Sormunen JJ, Nzeh J, Agjei RO, Vesterinen EJ, Klemola T. Public knowledge and awareness of tick-borne pathogens and diseases: a cross-sectional study in Ghana. Curr Res Parasitol Vector Borne Dis. 2024; 6: 100228.
734
Kim P, Maxwell S, Parijat N, Kim D, McNeely CL. Targeted tick-borne disease recognition: assessing risk for improved public health. Healthcare. 2024; 12: 984.
735
Institute of Medicine (US) Committee on Lyme Disease and Other Tick-Borne Diseases: The State of the Science. Critical Needs and Gaps in Understanding Prevention, Amelioration, and Resolution of Lyme and Other Tick-Borne Diseases: The Short-Term and Long-Term Outcomes: Workshop Report. Washington (DC): National Academies Press (US); 2011.
736
Makwarela TG, Seoraj-Pillai N, Nangammbi TC. Tick control strategies: critical insights into chemical, biological, physical, and integrated approaches for effective hard tick management. Vet Sci. 2025; 12: 114.
737
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004; 129(Suppl): S3-14.
738
Spickler AR. Exotic Ticks [Internet]. Ames, IA: Center for Food Security and Public Health, Iowa State University; 2022 [cited 2025 May 31]. Available from: https://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php
739
Spickler AR. Theileriosis in Cattle and Small Ruminants [Internet]. Ames, IA: Center for Food Security and Public Health, Iowa State University; 2019 [cited 2025 May 31]. Available from: http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php
740
Nyangiwe N, Yawa M, Muchenje V. Driving forces for changes in geographic range of cattle ticks (Acari: Ixodidae) in Africa: a review. S Afr J Anim. 2018; 48: 829-41.
741
Monakale KS, Ledwaba MB, Smith RM, Gaorekwe RM, Malatji DP. A systematic review of ticks and tick-borne pathogens of cattle reared by smallholder farmers in South Africa. Curr Res Parasitol Vector Borne Dis. 2024; 6: 100205.
742
Bell-Sakyi L, Koney EBM, Dogbey O, Walker AR. Incidence and prevalence of tick-borne haemoparasites in domestic ruminants in Ghana. Vet Parasitol. 2004; 124: 25-42.
743
Brown CG. Dynamics and impact of tick-borne diseases of cattle. Trop Anim Health Prod. 1997; 29: 1S-3S.
744
Kaufman PE, Koehler PG, Butler JF. External parasites on beef cattle. EDIS [Internet]. 2011 [cited 2025 Dec 30]; 2011. Available from: https://journals.flvc.org/edis/article/view/119216
745
Singh K, Kumar S, Sharma AK, Jacob SS, RamVerma M, Singh NK, et al. Economic impact of predominant ticks and tick-borne diseases on Indian dairy production systems. Exp Parasitol. 2022; 243: 108408.
746
Gharbi M, Sassi L, Dorchies P, Darghouth MA. Infection of calves with Theileria annulata in Tunisia: economic analysis and evaluation of the potential benefit of vaccination. Vet Parasitol. 2006; 137: 231-41.
747
Surve AA, Hwang JY, Manian S, Onono JO, Yoder J. Economics of East Coast fever: a literature review. Front Vet Sci. 2023; 10: 1239110.
748
Salih O, Chitanga S, Govinder K, Mukaratirwa S. Modelling the burden of disease for cattle-a case of ticks and tick-borne diseases in cattle in a rural set-up in South Africa. PLoS One. 2023; 18: e0293005.
749
Jaime Betancur Hurtado O, Giraldo-Ríos C. Economic and health impact of the ticks in production animals [Internet]. Ticks and Tick-Borne Pathogens. IntechOpen; 2019.
750
Garcia K, Weakley M, Do T, Mir S. Current and future molecular diagnostics of tick-borne diseases in cattle. Vet Sci. 2022; 9: 241.
751
Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979; 15: 307-417.
752
Hook SA, Jeon S, Niesobecki SA, Hansen AP, Meek JI, Bjork JKH, et al. Economic burden of reported lyme disease in high-incidence areas, United States, 2014-2016. Emerg Infect Dis. 2022; 28: 1170-9.
753
McLeaod R, Kristjanson P. Economic impact of ticks and tick-borne diseases to livestock in Africa, Asia and Australia- final report. Australian Goverment, Australian Centre for International Agricultural Research. 1999.
754
Agjei RO. The economic impact of tick-borne pathogens and diseases in Ghana: a bibliometric analysis. Sustainable Futures. 2026; 11: 101585.
755
Kose O, Bilgic HB, Bakirci S, Karagenc T, Adanir R, Yukari BA, et al. Prevalence of Theileria/Babesia species in ruminants in Burdur Province of Turkey. Acta Parasit. 2022; 67: 723-31.
756
Cicek H, Cicek H, Eser M, Tandogan M. Current status of ruminant theileriosis and its economical impact in Turkey. Turkiye Parazitol Derg. 2009; 33: 273-9.
757
de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 2006; 28: 275-83.
758
de la Fuente J. Translational biotechnology for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis. 2021; 12: 101738.
759
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology. 2024; 151: 1045-52.
760
Piesman J, Eisen L. Prevention of tick-borne diseases. Annu Rev Entomol. 2008; 53: 323-43.
761
Hamel HD. The use of flumethrin 1% pour-on for the control of Amblyomma spp. in various southern African countries. Onderstepoort J Vet Res. 1987; 54: 521-4.
762
Otranto D, Dantas-Torres F, Napoli E, Solari Basano F, Deuster K, Pollmeier M, et al. Season-long control of flea and tick infestations in a population of cats in the Aeolian archipelago using a collar containing 10% imidacloprid and 4.5% flumethrin. Vet Parasitol. 2017; 248: 80-3.
763
Eisen L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: the prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick Borne Dis. 2021; 12: 101649.
764
Nijhof AM, Balk JA, Postigo M, Rhebergen AM, Taoufik A, Jongejan F. Bm86 homologues and novel ATAQ proteins with multiple epidermal growth factor (EGF)-like domains from hard and soft ticks. Int J Parasitol. 2010; 40: 1587-97.
765
Buczek A, Buczek W, Bartosik K, Kulisz J, Stanko M. Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): ecological and biological considerations. Sci Rep. 2021; 11: 11310.
766
Rajput M, Sajid MS, Rajput NA, George DR, Usman M, Zeeshan M, et al. Entomopathogenic fungi as alternatives to chemical acaricides: challenges, opportunities and prospects for sustainable tick control. Insects. 2024; 15: 1017.
767
Agbede RI, Kemp DH, Hoyte HM. Babesia bovis infection of secretory cells in the gut of the vector tick Boophilus microplus. Int J Parasitol. 1986; 16: 109-14.
768
Levy MG, Ristic M. Babesia bovis : continuous cultivation in a microaerophilous stationary phase culture. Science. 1980; 207: 1218-20.
769
Brown WC, Estes DM, Chantler SE, Kegerreis KA, Suarez CE. DNA and a CpG oligonucleotide derived from Babesia bovis are mitogenic for bovine B cells. Infect Immun. 1998; 66: 5423-32.
770
Silva MG, Knowles DP, Mazuz ML, Cooke BM, Suarez CE. Stable transformation of Babesia bigemina and Babesia bovis using a single transfection plasmid. Sci Rep. 2018; 8: 6096.
771
Aounallah H, Bensaoud C, M’ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick salivary compounds for targeted immunomodulatory therapy. Front Immunol. 2020; 11: 583845.
772
Kleissl L, Weninger S, Winkler F, Ruivo M, Wijnveld M, Strobl J. Ticks’ tricks: immunomodulatory effects of ixodid tick saliva at the cutaneous tick-host interface. Front Immunol. 2025; 16: 1520665.
773
Leal-Galvan B, Kumar D, Karim S, Saelao P, Thomas DB, Oliva Chavez A. A glimpse into the world of microRNAs and their putative roles in hard ticks. Front Cell Dev Biol. 2024; 12: 1460705.
774
Diop SD, Inci A, Kizgin AD, Duzlu O. Understanding one health and zoonosis: a systematic review with a bibliometric analysis of Turkish research and global perspectives (1974-2023). Kafkas Univ Vet Fak Derg. 2025; 31: 333-40.